
Purdue University: ECE438 - Digital Signal Processing with Applications 1

1 Short help on Parks-McClellan design of FIR Low

Pass Filters using Matlab

The design of an FIR filter using Parks-McClellan algorithm is a two-step process. First,
you need to use the firpmord command to estimate the order of the optimal Parks-McClellan
FIR filter to meet your design specifications. The syntax of the command is as follows:

[n,fo,mo,w]=firpmord(f,m,dev)

f is the vector of band frequencies. For a low pass filter, f=[wp ws] where wp is the upper
edge of the passband and ws is the lower edge of the stopband. The vector m contains the
desired magnitude response values at the passbands and the stopbands of the filter. Since
a lowpass filter consists of a passband followed by a stopband, m has two entires. Namely,
m=[1 0] because you would like the magnitude response to be equal to 1 in the passband
and equal to 0 in the stopband. The vector dev has the maximum allowable deviations of
the magnitude response of the filter from the desired magnitude response. It has the same
number of entries as there are m. Thus, for a low-pass filter it has two entries and is equal
to [passband ripple, stopband ripple]. After you specify the vectors f, m and dev, you
can run the firpmord command in the syntax given above to compute the order of the filter n.
The firpmord command also outputs the resulting fo and mo vectors. In actually designing
your filter using firpm , you should use these two vectors instead of f and m. The second
stage is the actual design of the filter, using the firpm command. After running firpmord

and finding the n, fo and mo, type
b=firpm(n,fo,mo)

to find the impulse response b of the Parks-McClellan FIR filter you need to design. The
vector b contains the coefficients for the Z−transform of your filter H(z). That is,

H(z) = b(1) + b(2)z−1 + b(3)z−2 + · · · + b(n + 1)z−n

This conludes the design of your filter. The firpmord and firpm can be used to design also
highpass, bandpassand multiband filters. See the Matlab help for details.

2 Matlab Help on firpmord

FIRPMORD Parks-McClellan optimal equiripple FIR order estimator.

[N,Fo,Ao,W] = FIRPMORD(F,A,DEV,Fs) finds the approximate order N,

normalized frequency band edges Fo, frequency band magnitudes Ao and

weights W to be used by the FIRPM function as follows:

B = FIRPM(N,Fo,Ao,W)

The resulting filter will approximately meet the specifications given

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

Purdue University: ECE438 - Digital Signal Processing with Applications 2

by the input parameters F, A, and DEV. F is a vector of cutoff

frequencies in Hz, in ascending order between 0 and half the sampling

frequency Fs. If you do not specify Fs, it defaults to 2. A is a

vector specifying the desired function’s amplitude on the bands defined

by F. The length of F is twice the length of A, minus 2 (it must

therefore be even). The first frequency band always starts at zero,

and the last always ends at Fs/2. It is not necessary to add these

elements to the F vector. DEV is a vector of maximum deviations or

ripples (in linear units) allowable for each band. DEV must have the

same length as A.

C = FIRPMORD(F,A,DEV,FS,’cell’) is a cell-array whose elements are the

parameters to FIRPM.

EXAMPLE

Design a lowpass filter with a passband-edge frequency of 1500Hz, a

stopband-edge of 2000Hz, passband ripple of 0.01, stopband ripple

of 0.1, and a sampling frequency of 8000Hz:

[n,fo,mo,w] = firpmord([1500 2000], [1 0], [0.01 0.1], 8000);

b = firpm(n,fo,mo,w);

This is equivalent to

c = firpmord([1500 2000], [1 0], [0.01 0.1], 8000, ’cell’);

b = firpm(c{:});

CAUTION 1: The order N is often underestimated. If the filter does not

meet the original specifications, a higher order such as N+1 or N+2 will.

CAUTION 2: Results are inaccurate if cutoff frequencies are near zero

frequency or the Nyquist frequency.

See also FIRPM, KAISERORD.

3 Matlab Help on firpm

FIRPM Parks-McClellan optimal equiripple FIR filter design.

B=FIRPM(N,F,A) returns a length N+1 linear phase (real, symmetric

coefficients) FIR filter which has the best approximation to the

desired frequency response described by F and A in the minimax sense.

F is a vector of frequency band edges in pairs, in ascending order

between 0 and 1. 1 corresponds to the Nyquist frequency or half the

sampling frequency. At least one frequency band must have a non-zero

width. A is a real vector the same size as F which specifies the

desired amplitude of the frequency response of the resultant filter B.

Purdue University: ECE438 - Digital Signal Processing with Applications 3

The desired response is the line connecting the points (F(k),A(k)) and

(F(k+1),A(k+1)) for odd k; FIRPM treats the bands between F(k+1) and

F(k+2) for odd k as "transition bands" or "don’t care" regions. Thus

the desired amplitude is piecewise linear with transition bands. The

maximum error is minimized.

For filters with a gain other than zero at Fs/2, e.g., highpass

and bandstop filters, N must be even. Otherwise, N will be

incremented by one. Alternatively, you can use a trailing ’h’ flag to

design a type 4 linear phase filter and avoid incrementing N.

B=FIRPM(N,F,A,W) uses the weights in W to weight the error. W has one

entry per band (so it is half the length of F and A) which tells

FIRPM how much emphasis to put on minimizing the error in each band

relative to the other bands.

B=FIRPM(N,F,A,’Hilbert’) and B=FIRPM(N,F,A,W,’Hilbert’) design filters

that have odd symmetry, that is, B(k) = -B(N+2-k) for k = 1, ..., N+1.

A special case is a Hilbert transformer which has an approx. amplitude

of 1 across the entire band, e.g. B=FIRPM(30,[.1 .9],[1 1],’Hilbert’).

B=FIRPM(N,F,A,’differentiator’) and B=FIRPM(N,F,A,W,’differentiator’)

also design filters with odd symmetry, but with a special weighting

scheme for non-zero amplitude bands. The weight is assumed to be equal

to the inverse of frequency times the weight W. Thus the filter has a

much better fit at low frequency than at high frequency. This designs

FIR differentiators.

B=FIRPM(...,{LGRID}), where {LGRID} is a one-by-one cell array

containing an integer, controls the density of the frequency grid. The

frequency grid size is roughly LGRID*N/2*BW, where BW is the fraction

of the total band interval [0,1] covered by F. LGRID should be no less

than its default of 16. Increasing LGRID often results in filters which

are more exactly equiripple, at the expense of taking longer to

compute.

[B,ERR]=FIRPM(...) returns the maximum ripple height ERR.

[B,ERR,RES]=FIRPM(...) returns a structure RES of optional results

computed by FIRPM, and contains the following fields:

RES.fgrid: vector containing the frequency grid used in

the filter design optimization

RES.des: desired response on fgrid

Purdue University: ECE438 - Digital Signal Processing with Applications 4

RES.wt: weights on fgrid

RES.H: actual frequency response on the grid

RES.error: error at each point on the frequency grid (desired - actual)

RES.iextr: vector of indices into fgrid of extremal frequencies

RES.fextr: vector of extremal frequencies

FIRPM is now a "function function", similar to CFIRPM, allowing you

to write a function which defines the desired frequency response.

B=FIRPM(N,F,@fresp,W) returns a length N+1 FIR filter which has the

best approximation to the desired frequency response as returned by the

function handle @fresp. The function is called from within FIRPM using

the syntax:

[DH,DW] = fresp(N,F,GF,W);

where:

N is the filter order.

F is the vector of frequency band edges which must appear monotonically

between 0 and +1, where 1 is the Nyquist frequency. The frequency

bands span F(k) to F(k+1) for k odd; the intervals F(k+1) to F(k+2)

for k odd are "transition bands" or "don’t care" regions during

optimization.

GF is a vector of grid points which have been linearly interpolated

over each specified frequency band by FIRPM, and determines the

frequency grid at which the response function will be evaluated.

W is a vector of real, positive weights, one per band, for use

during optimization. W is optional; if not specified, it is set

to unity weighting before being passed to ’fresp’.

DH and DW are the desired complex frequency response and

optimization weight vectors, respectively, evaluated at each

frequency in grid GF.

The predefined frequency response function handle for FIRPM is

@firpmfrf, but you can write your own. See the help for

PRIVATE/FIRPMFRF for more information.

B=FIRPM(N,F,{@fresp,P1,P2,...},W) specifies optional arguments

P1, P2, etc., to be passed to the response function handle @fresp.

B=FIRPM(N,F,A,W) is a synonym for B=FIRPM(N,F,{@firpmfrf,A},W),

where A is a vector of response amplitudes at each band edge in F.

FIRPM normally designs symmetric (even) FIR filters. B=FIRPM(...,’h’)

and B=FIRPM(...,’d’) design antisymmetric (odd) filters. Each frequency

response function handle @fresp can tell FIRPM to design either an even

or odd filter in the absence of the ’h’ or ’d’ flags. This is done

Purdue University: ECE438 - Digital Signal Processing with Applications 5

with:

SYM = fresp(’defaults’,{N,F,[],W,P1,P2,...})

FIRPM expects @fresp to return SYM = ’even’ or SYM = ’odd’. If @fresp

does not support this call, FIRPM assumes ’even’ symmetry.

% Example of a length 31 lowpass filter:

h=firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);

% Example of a low-pass differentiator:

h=firpm(44,[0 .3 .4 1],[0 .2 0 0],’differentiator’);

% Example of a type 4 highpass filter:

h=firpm(25,[0 .4 .5 1],[0 0 1 1],’h’);

See also FIRPMORD, CFIRPM, FIRLS, FIR1, FIR2, BUTTER, CHEBY1, CHEBY2,

ELLIP, FREQZ, FILTER, and, in the Filter Design Toolbox, FIRGR.

