Mini-Pro	<u> oject Worksheet – Musical Intervals</u>	Name:
Part 1 Frequence	ies after subtracting 200 Hz:	
Set the o	ffset to -200Hz, and listen to the transposed meleto the original? Does it sound like the same mel	ody. How does the transposed version ody?
_	ies after adding 200 Hz:	
compare	to the original? Does it sound like the same mel	
Draw a c	onclusion: Is a constant frequency offset a good	way to transpose a melody?
	ny middle C (or C4 on the diagram, with the nur how many half steps up do you need to go in on	
If you be	gin on A4, what note is a perfect fifth above?	

Part 3

Use C4 as the fundamental. What is its frequency? _____ Hz

What is the frequency of a major 3rd above the fundamental?

What is the frequency ratio of the interval? Express your result in the form "a: 1":

Repeat using C5 as the fundamental, and A#2 as the fundamental:

Frequency of C5: _____ Hz

A#2: _____ Hz

Frequency of major 3rd above: _____ Hz A#2: _____ Hz

Frequency ratio: _____

A#2:

Draw a conclusion: Based on what you have experienced about musical intervals so far, can you develop at least part of an explanation for why the frequencies have been selected as they have?

Part 4

Complete the table below to show each interval as a ratio of the form "a: 1".

Major
$$2^{nd} - 9:8 = 1.125:1$$

Major
$$3^{rd} - 5:4 = \underline{\hspace{1cm}} : 1$$

Perfect
$$4^{th} - 4:3 = :1$$

Perfect
$$5^{th} - 3:2 = \underline{\hspace{1cm}} : 1$$

Major
$$6^{th} - 5:3 = \underline{\hspace{1cm}} : 1$$

Major
$$7^{th} - 15:8 = \underline{\hspace{1cm}} : 1$$

	1	9/8	5/4	4/3	3/2	5/3	15/8	2
Comn	nent on	how w	ell this	sounds	to you:			
Transj	ose to	G4 as t	the fund	lamenta	l, and th	nen F4 a	as the fu	ndamental.
Comm	nent on	how w	ell this	scale tra	anspose	s (the d	ifference	es may be rather subtle):
Comm	nent on	how w	ell this	scale tra	anspose	s (the d	ifference	es may be rather subtle):

Listen to the following scale using your new VI, and using A4 (440 Hz) as the fundamental:

Part 5

Derive a mathematical function to calculate the frequencies used by the equal-tempered scale, e.g., given a fundamental and semitone offset, calculate the frequency. You must show your derivation process, and not simply the end result!