Instrument Recognition

Spectral Analysis of Musical Instruments and Pitch

Patrick Kruse, Kyle Ringgenberg, Yi-Chieh Wu

Purpose

To detect the pitch and instrument of a monophonic signal. To decompose polyphonic signals into their component pitches and instruments by analyzing the waveforms and spectra of each instrument.

Applications

- Understanding Musical Timbre
- Automatic Music Transcription
- Music Information Retrieval

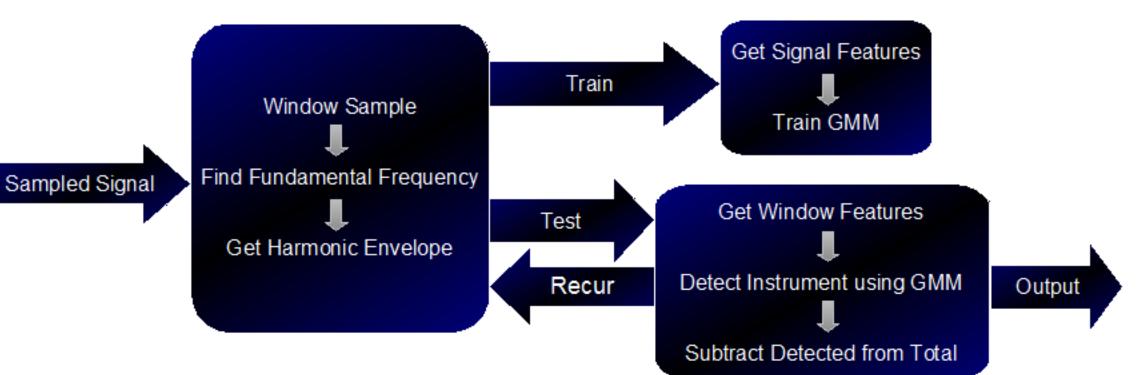
Background

- Techniques from speech processing
- Focus on monophonic recognition
- Limited successes
- Limited number of instruments
- Known pitch, detect instrument
- Specially-arranged ensemble recordings

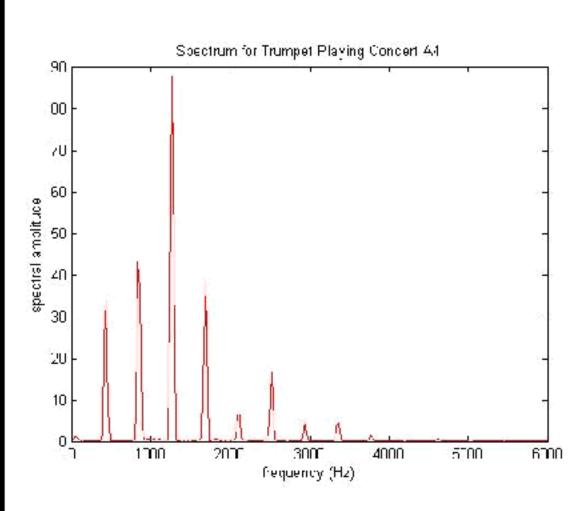
Why not use Matched Filters?

Approach

- Capture characteristics (features) of the signal
- Classify using a Gaussian
- Determine unknown instrument
- Good in Concept, Bad in Practice correlated to the instrument Player Differences Very Frequency-Sensitive Instrument Signals Too Similar
- Mixture Model Hard to reproduce sounds in lower and upper ranges using signal features



Pitch Detection



Technique

Detect frequency of lowest peak in spectrum

Advantages

- Simplistic and easy to code
- Works for harmonic signals

Disadvantages

 Useless in presence of noise or other inharmonic frequencies

Other Algorithms

- Autocorrelation
- Harmonic Product Spectrum
- Maximum Likelihood Estimation

Advantages

- Works with signals that are not purely harmonic Disadvantages
- Frequency-halving or frequency-doubling

Features

Cepstral Features

Mel-frequency Cepstrum Coefficients (MFCC), k = 2:13

Spectral Features

- Slope
- Roll-Off
- Centroid Spread
- Skew
- Kurtosis
- Odd-to-Even Harmonic Energy Ratio (OER)
- Tristimulus

Note: Most of these features have perceptual interpretations. centroid → sound "brightness" tristimulus → equivalent to

Sinusoidal Harmonic Modeling Estimate the harmonic peaks Produce the "typical" spectrum of the instrument independent of fundamental frequency Average Harmonic Envelope

Instrument Characteristics

Clarinet

visual color attributes

- Fast Decline, Low Roll-Off Frequency
- High OER due to Closed Cylinder at One End
- First Tristimulus Proportionately Higher than Second and Third

Saxophone

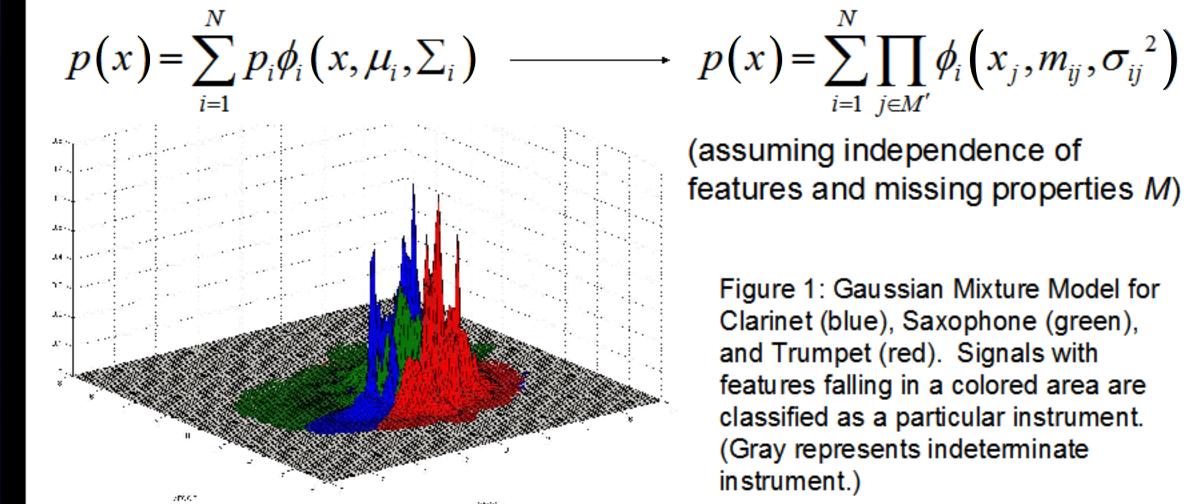
- Slow Decline, High Roll-Off Frequency
- More Evenly Distributed Tristimulus Trumpet
- Medium Decline, Mid Roll-Off Frequency

Gaussian Mixture Model

- Models the probability density function of observed
- Independent variables are measured as fractions of a total

variables by a multivariate Gaussian mixture density

- K-means clustering
- Refine using Expectation-Maximization
- Missing Features Approach



(assuming independence of features and missing properties M)

Figure 1: Gaussian Mixture Model for Clarinet (blue), Saxophone (green), and Trumpet (red). Signals with features falling in a colored area are classified as a particular instrument. (Gray represents indeterminate instrument.)

Sound Data

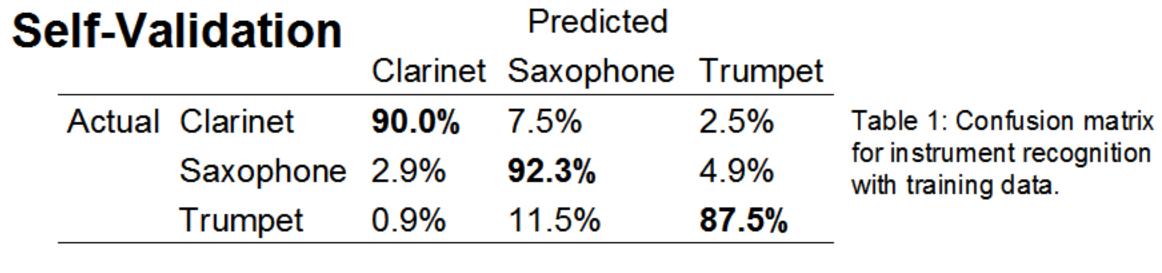
Training

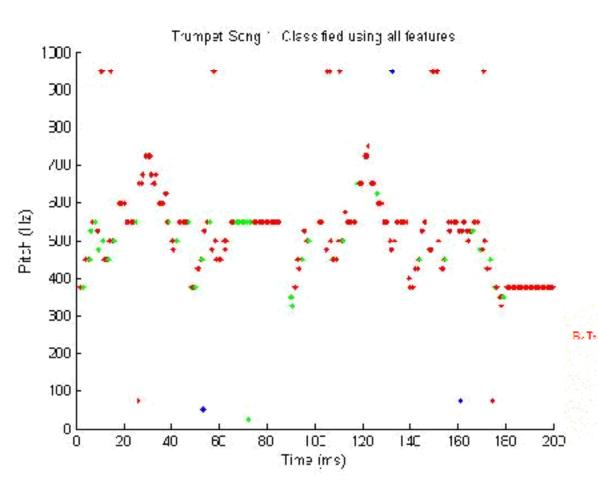
- Monophonic signals
- One full chromatic scale per instrument

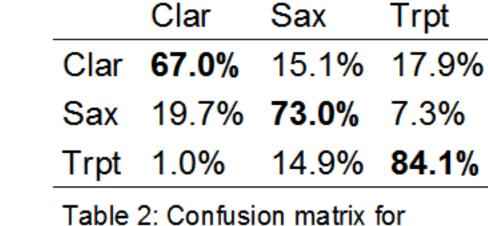
Testing

- One short monophonic tune per instrument
- Two short polyphonic tunes with each instrument combination

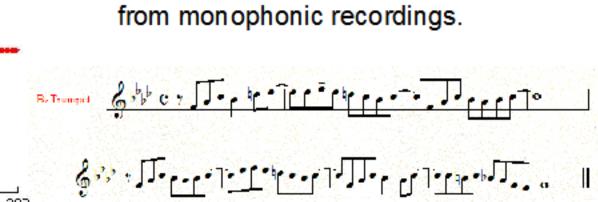
Results





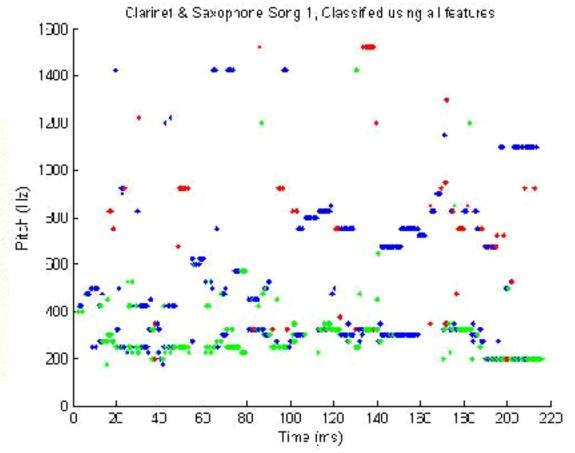


instrument recognition of single notes



- Average instrument identification: 75%
- Much better than guessing!
- In test data, clarinet and saxophone are most similar (same instrument family), and clarinet and trumpet are most dissimilar (very different spectrum).

Polyphonic Recordings



Discussion

- Detected pitch through fundamental frequency analysis.
- Classified characteristics of each instrument based on feature analysis and training.
- Future work
 - Model additional temporal, spectral, harmonic, and perceptual features
- Stronger training data different players, environments, musical genre; polyphonic music
- Capture other instruments and instrument families (strings, woodwinds, percussion, etc)

References

- J. Eggink and G.J. Brown. "A Missing Feature Approach to Instrument Identification in Polyphonic Music," in IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, April 2003, 553-556.
- A.A. Livshin and X. Rodet. "Musical Instrument Identification in Continuous Recordings," in Proc. of the 7th Int. Conference on Digital Audio Effects, Naples, Italy, October 5-8, 2004.
- G. Peeters. "A large set of audio features for sound description (similarity and classification) in the CUIDADO project," 2003. URL:

http://www.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf.

For questions, comments, and preprint requests: {pakruse, kringg, yjw}@rice.edu

Acknowledgements

■Dept. of Electrical and Computer Engineering, Rice University ■Richard Baraniuk William Chan •Music Classification by Genre. Elec 301 Project, Fall 2003. Mitali Banerjee, Melodie Chu, Chris Hunter, Jordan Mayo Auditory Toolbox. Malcolm Slaney ■Netlab. Neural Computing Research Group. Aston University