Introductory Computer Assignment to MATLAB Anders Gjendemsjø #### **Practical Information** For problem 4 you will need **earphones**. Remember that though MATLAB is a highly advanced programming language, the syntax is simple. A very basic exposure to computer programming is often enough to start out on MATLAB. #### Problem 1 - Vectors and matrices (a) Enter the following in MATLAB $$A = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 6 & 3 \\ 3 & 5 & 2 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 & 6 \\ 7 & 4 & 1 & 5 \\ 5 & 2 & 4 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}.$$ Find AB, A^{-1} , a matrix X such that AX = B and a vector x such that Ax = b. - (b) Without using MATLAB, write down the sequences that the following MATLAB code will produce - x1 = 0:1:5, x2 = 0:5 - x3 = 2:4:14, x4 = 13:-4:2 - x5 = pi*[0:1/2:2] Verify your results using MATLAB. - (c) Write a command that will extract the even indexed elements of a length N vector x. - (d) Similarly, write a command that will extract the odd indexed elements of a vector x with unknown length, i.e the vector x has a given length but we do not know it. - (e) First, create a vector x6 that consists of 10 zeros. (Use the zeros command). Then replace the even indexed elements of x6 with the constant e. Solve this problem in two different ways, by using a for loop and (more elegant) using indexing techniques. ## Problem 2 - Complex numbers Let $z_1 = 2 + j$ and $z_2 = 3 - 4j$. Solve the following subproblems, first by hand, then verify your results using MATLAB. - (a) Compute the real and imaginary parts of z_1^* , z_1z_2 and $\frac{z_1}{z_2}$. - (b) Find the magnitude and phase of z_1 , z_2 , z_1^* , z_1z_2 and $\frac{z_1}{z_2}$. Write the z_1 in the form $z = re^{j\theta}$, where r is a non-negative real number. - (c) How are the magnitude and phase of z_1^* related to the magnitude and phase of z_1 ? - (d) How are the magnitude and phase of z_1z_2 and $\frac{z_1}{z_2}$ related to the magnitudes and phases of z_1 and z_2 ? ## Problem 3 - Plotting functions In this problem we will exercise the basic plotting commands in MATLAB. - (a) Create a variable t that takes values from 0 to 2π with step 0.001. Let $y_1 = \sin(t), y_2 = t^2 + \cos(t) + \frac{e^{t^2}}{10^{16}}$ and $y_3 = \cos(t)$. Then do the following - Plot y_1 and y_2 versus t in separate figures. - Plot y_1 and y_3 versus t in the *same* figure. y_3 should be plotted in red. See help plot for changing the color of a plot. - Divide a figure in two by using the **subplot** command, then plot y_1 and y_3 in the upper part and y_2 in the lower part (all plots versus t). - (b) Create an index sequence n (step = 1) ranging from -10 to 10 and make a stem plot of $y_4 = \cos(2\pi \frac{n}{10})$ as a function of n. For all plots label both the x and y axes and add suitable titles. ### Problem 4 - Playing with sinusoids (a) According to table below construct sinusoids of the form $A\sin(2\pi ft + \varphi)$. Use the time variable t=0:.0001:.33 to create a "short" sinusoid. | Sinusoid | Frequency | Amplitude | Length | Phase | |----------|-----------|-----------|--------|-----------------| | y_A | 220.00 | 1.5 | Short | 0 | | y_C | 130.813 | 1.5 | Short | 0 | | y_{Cl} | 130.813 | 1.2 | Short | 0 | | y_D | 146.8632 | 1.5 | Short | 0 | | y_E | 164.814 | 1.5 | Short | 0 | | y_{El} | 164.814 | 1.5 | Short | $\frac{\pi}{4}$ | | y_F | 176.614 | 1.5 | Short | 0 | | y_G | 195.998 | 1.5 | Short | 0 | | y_{Gl} | 2195.998 | 1.5 | Short | 0 | You can generate a sine wave the same way you generate a square wave. Read the help file on **square**. Note that the resulting sinusoids from y_A to y_{Gl} are all vectors. That is we have vectors representing our signals. - (b) Use the MATLAB function sound to listen to some of the sinusoids defined above. Then determine the effect of changes in f, A and φ . You should look at the changes one at the time, i.e. compare: - y_A and y_{Gl} - y_C and y_{Cl} - y_E and y_{El} - (c) Change y_{Cl} , y_{El} and y_{Gl} according to the table below. Use the time variable t_l= 0:.0001:.66 to create a "long" sinusoid. | Sinusoid | Frequency | Amplitude | Length | Phase | |----------|-----------|-----------|--------|-------| | y_{Cl} | 130.813 | 1.5 | Long | 0 | | y_{El} | 164.814 | 1.5 | Long | 0 | | y_{Gl} | 195.998 | 1.5 | Long | 0 | (d) Create signals (vectors) s_1 , s_2 and s_3 which are concatenations of our previously defined sinusoids according to the following: $$s_{1} = \begin{bmatrix} y_{C} & y_{D} & y_{E} & y_{F} & y_{Gl} & y_{Gl} & y_{A} & y_{A} \end{bmatrix}$$ $$s_{2} = \begin{bmatrix} y_{A} & y_{A} & y_{Gl} & y_{F} & y_{F} & y_{F} \end{bmatrix}$$ $$s_{3} = \begin{bmatrix} y_{El} & y_{El} & y_{D} & y_{D} & y_{D} & y_{D} \end{bmatrix}$$ (To create such concatenations in MATLAB enter exactly as given above.) Then create $y = \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix}$ and play y.