# Approximately Universal Codes for Slow Fading Channels

Pramod Viswanath

Joint work with Saurabh Tavildar

University of Illinois at Urbana-Champaign

April 18, 2005

## **A Wireless Channel**

Slow Fading channel

$$y[m] = \frac{h}{m} x[m] + w[m]$$

Multiplicative noise h fixed over time scale of communication

#### A Wireless Channel

Slow Fading

$$y[m] = h \ x[m] + w[m]$$

Reliable communication:

Fundamental tension between data rate R and error probability  $\mathbb{P}_e$ 

#### A Wireless Channel

Slow Fading

$$y[m] = h \ x[m] + w[m]$$

Reliable communication:

Fundamental tension between data rate R and error probability  $\mathbb{P}_e$ 

 Simple observation: arbitrarily reliable communication not possible at any data rate

Error Probability  $\mathbb{P}_e > 0$ 

## Rate and Probability of Error

- $\circ$  Tradeoff between rate R, and probability of error  $\mathbb{P}_e$
- Outage: Given a rate and SNR:

$$\mathbb{P}_{\text{out}} = \mathbb{P} \left\{ h \mid I(x; y \mid h) < R \right\}$$
$$= \mathbb{P} \left[ \log \left( 1 + |h|^2 \mathsf{SNR} \right) < R \right].$$

## A Summary

- A narrowband slow fading channel is ordered.
- An AWGN channel capacity-achieving code works here as well.
- Several channel models are not ordered:
  - a parallel channel
  - a MIMO channel

## **Parallel Fading Channel**

$$x_1 \qquad h_1 \qquad y_1 = h_1x_1 + w_1$$

$$x_2 \qquad h_2 \qquad y_2 = h_2x_2 + w_2$$

$$x_3 \qquad y_3 = h_3x_3 + w_3$$

## **Parallel Channel Model**



Time Diversity: coding over time

## **Communication Over Slow Fading Channel**

- L parallel sub-channels
- $\diamond$  Slow fading:  $h_1, \ldots, h_L$  random, but fixed over time
- $\diamond$  Correlated fading:  $h_1, \ldots, h_L$  jointly distributed
- $\diamond$  Coherent communication:  $h_1, \ldots, h_L$  known to the receiver

#### **Parallel Channel Model**



- ⋄ Time Diversity: coding over time
- Frequency Diversity: coding over OFDM symbols
- Antenna Diversity: coding for MIMO channel: D-BLAST

## **Communication Over Slow Fading Channel**

- L parallel sub-channels
- $\diamond$  Slow fading:  $h_1, \ldots, h_L$  random, but fixed over time
- $\diamond$  Correlated fading:  $h_1, \ldots, h_L$  jointly distributed
- $\diamond$  Coherent communication:  $h_1, \ldots, h_L$  known to the receiver

## **Communication Over Slow Fading Channel**

- L parallel sub-channels
- $\diamond$  Slow fading:  $h_1, \ldots, h_L$  random, but fixed over time
- $\diamond$  Correlated fading:  $h_1, \ldots, h_L$  jointly distributed
- $\diamond$  Coherent communication:  $h_1, \ldots, h_L$  known to the receiver
- · Focus in this talk:

Short block-length communication at high SNR

## Rate and Probability of Error

- $\circ$  Tradeoff between rate R, and probability of error  $\mathbb{P}_e$
- Outage: Given a rate and SNR:

$$\mathbb{P}_{\mathrm{out}} := \min_{\mathbb{P}_{\boldsymbol{x}}} \, \mathbb{P} \left( \left\{ \left. \mathbf{h} \, \right| I(\boldsymbol{x}; \boldsymbol{y} | \, \mathbf{h}) \, < \, R \, \right\} \right)$$

Compound channel result:

Universal code achieves reliable communication for all channels not in outage

 $\circ \mathbb{P}_e = \mathbb{P}_{\text{out}}$  with universal codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes
- Literature: space time codes delay diversity, rotated QAM codes, space time trellis codes, space time turbo codes.

## Rate and Probability of Error

- Tradeoff between rate R, and probability of error P<sub>e</sub>
- Outage: Given a rate and SNR:

$$\mathbb{P}_{\mathrm{out}} := \min_{\mathbb{P}_{\boldsymbol{x}}} \, \mathbb{P} \left( \left\{ \left. \mathbf{h} \, \right| \, I(\boldsymbol{x}; \boldsymbol{y} | \, \mathbf{h}) \, < \, R \, \right\} \right)$$

Compound channel result:

Universal code achieves reliable communication for all channels not in outage

 $\circ \mathbb{P}_e = \mathbb{P}_{\text{out}}$  with universal codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes

# R and $\mathbb{P}_e$ : a Coarser Scaling

- Coarser formulation (ZT03):
  - Rate =  $r \log(SNR)$
  - Probability of error =  $\frac{1}{\mathsf{SNR}^d}$
- $\diamond$  Given r, find maximal  $d = d^*(r)$
- Allows us to focus on the fading coefficient h rather than the combination of the fading coefficient and the additive noise.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes
- Literature: space time codes delay diversity, rotated QAM codes, space time trellis codes, space time turbo codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes

## Rate and Probability of Error

- $\circ$  Tradeoff between rate R, and probability of error  $\mathbb{P}_e$
- Outage: Given a rate and SNR:

$$\mathbb{P}_{\mathrm{out}} := \min_{\mathbb{P}_{\boldsymbol{x}}} \, \mathbb{P} \left( \left\{ \left. \mathbf{h} \mid I(\boldsymbol{x}; \boldsymbol{y} | \, \mathbf{h} \right) \, < \, R \, \right\} \right)$$

Compound channel result:

Universal code achieves reliable communication for all channels not in outage

 $\circ \mathbb{P}_e = \mathbb{P}_{\text{out}}$  with universal codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes
- Literature: space time codes delay diversity, rotated QAM codes, space time trellis codes, space time turbo codes.

# R and $\mathbb{P}_e$ : a Coarser Scaling

- Coarser formulation (ZT03):
  - Rate =  $r \log(SNR)$
  - Probability of error =  $\frac{1}{\mathsf{SNR}^d}$
- $\diamond$  Given r, find maximal  $d = d^*(r)$
- Allows us to focus on the fading coefficient h rather than the combination of the fading coefficient and the additive noise.

## Characterization of Channels in Outage

Outage: Input distribution can be taken as i.i.d. Gaussian

$$\text{outage} = \left\{ \mathbf{h} \mid \sum_{i=1}^{L} \log \left( 1 + |h_i|^2 \mathsf{SNR} \right) < r \log(\mathsf{SNR}) \right\}$$

- Outage condition independent of distribution on h
- $\diamond$  Outage curve:  $\mathbb{P}(\text{outage}) = \text{SNR}^{-d}\text{out}^{(r)}$
- $\circ \mathbb{P} (\text{outage}) \leq \mathbb{P}_e \Rightarrow d^*(r) \leq d_{\text{out}}(r)$

# R and $\mathbb{P}_e$ : a Coarser Scaling

- Coarser formulation (ZT03):
  - Rate =  $r \log(SNR)$
  - Probability of error =  $\frac{1}{SNR^d}$
- $\diamond$  Given r, find maximal  $d = d^*(r)$
- Allows us to focus on the fading coefficient h rather than the combination of the fading coefficient and the additive noise.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes
- Literature: space time codes delay diversity, rotated QAM codes, space time trellis codes, space time turbo codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes

## Rate and Probability of Error

- $\diamond$  Tradeoff between rate R, and probability of error  $\mathbb{P}_e$
- Outage: Given a rate and SNR:

$$\mathbb{P}_{\mathrm{out}} := \min_{\mathbb{P}_{\boldsymbol{x}}} \, \mathbb{P} \left( \left\{ \left. \mathbf{h} \, \right| \, I(\boldsymbol{x}; \boldsymbol{y} | \, \mathbf{h}) \, < \, R \, \right\} \right)$$

Compound channel result:

Universal code achieves reliable communication for all channels not in outage

 $\circ \mathbb{P}_e = \mathbb{P}_{\text{out}}$  with universal codes.

- Understand universal codes at high SNR
  - code design criteria
  - simple examples of universal codes
- Literature: space time codes delay diversity, rotated QAM codes, space time trellis codes, space time turbo codes.

# R and $\mathbb{P}_e$ : a Coarser Scaling

- Coarser formulation (ZT03):
  - Rate =  $r \log(SNR)$
  - Probability of error =  $\frac{1}{SNR^d}$
- $\diamond$  Given r, find maximal  $d = d^*(r)$
- Allows us to focus on the fading coefficient h rather than the combination of the fading coefficient and the additive noise.

## Characterization of Channels in Outage

Outage: Input distribution can be taken as i.i.d. Gaussian

$$\text{outage} = \left\{ \mathbf{h} \mid \sum_{i=1}^{L} \log \left( 1 + |h_i|^2 \mathsf{SNR} \right) \ < \ r \log(\mathsf{SNR}) \right\}$$

- Outage condition independent of distribution on h
- $\diamond$  Outage curve:  $\mathbb{P}(\text{outage}) = \text{SNR}^{-d}\text{out}^{(r)}$
- $\diamond \mathbb{P} (\text{outage}) \leq \mathbb{P}_e \Rightarrow d^*(r) \leq d_{\text{out}}(r)$

### Main Result

- Setting:
  - coherent communication over short block length at high SNR
  - measure performance in terms of tradeoff curve

#### Main Result

- Setting:
  - coherent communication over short block length at high SNR
  - measure performance in terms of tradeoff curve

#### Main Result:

- Space only codes universally achieve the outage curve for the parallel channel
  - \* engineering value: code is robust to channel modeling errors
- Simple deterministic construction of permutation codes

#### Main Result

- Setting:
  - coherent communication over short block length at high SNR
  - measure performance in terms of tradeoff curve

#### Main Result:

- Space only codes universally achieve the outage curve for the parallel channel
  - \* engineering value: code is robust to channel modeling errors
- Simple deterministic construction of permutation codes
- Use universal parallel channel codes as constituents of universal MIMO channel codes

#### **Smart Union Bound**

- $\diamond \mathbb{P}(\text{outage}) \leq \mathbb{P}_{e} \leq \mathbb{P}(\text{outage}) + \mathbb{P}(\text{error}|\text{no-outage})$
- We want the second term to decay exponentially in SNR
  - Look at the union bound
  - Each pairwise error should decay exponentially in SNR

## **Smart Union Bound**

$$\diamond \ \mathbb{P}(\text{outage}) \ \leq \ \mathbb{P}_e \ \leq \ \mathbb{P}(\text{outage}) \ + \ \mathbb{P}(\text{error}|\text{no-outage})$$

- We want the second term to decay exponentially in SNR
  - Look at the union bound
  - Each pairwise error should decay exponentially in SNR
- $\diamond$  Let  $\mathbf{d} = x(1) x(2)$  be the difference codeword (space-only)

$$\mathbb{P}_{e}(x(1) \to x(2) | \mathbf{h}) \leq \exp\left(-\sum_{i=1}^{L} |h_{i}|^{2} |d_{i}|^{2}\right)$$

$$\min_{\mathbf{h} \notin \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right]$$

$$\mathbf{h}: \sum_{i=1}^{L} \log \left(1 + \mathsf{SNR}|h_i|^2\right) > R$$

# **Smart Union Bound**

$$\diamond \ \mathbb{P}(\text{outage}) \ \leq \ \mathbb{P}_e \ \leq \ \mathbb{P}(\text{outage}) \ + \ \mathbb{P}(\text{error}|\text{no-outage})$$

- We want the second term to decay exponentially in SNR
  - Look at the union bound
  - Each pairwise error should decay exponentially in SNR
- $\diamond$  Let  $\mathbf{d} = x(1) x(2)$  be the difference codeword (space-only)

$$\mathbb{P}e\left(\boldsymbol{x}(1) \to \boldsymbol{x}(2) \mid \mathbf{h}\right) \leq \exp\left(-\sum_{i=1}^{L} |h_i|^2 |d_i|^2\right)$$

$$\min_{\mathbf{h} \notin \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right]$$

$$\mathbf{h}: \ \sum_{i=1}^{L} \log \left(1 + \mathsf{SNR}|h_i|^2\right) > R$$

# **Smart Union Bound**

$$\circ \mathbb{P}(\text{outage}) \leq \mathbb{P}_e \leq \mathbb{P}(\text{outage}) + \mathbb{P}(\text{error}|\text{no-outage})$$

- We want the second term to decay exponentially in SNR
  - Look at the union bound
  - Each pairwise error should decay exponentially in SNR
- $\diamond$  Let  $\mathbf{d} = x(1) x(2)$  be the difference codeword (space-only)

$$\mathbb{P}_{\mathbf{e}}(\boldsymbol{x}(1) \rightarrow \boldsymbol{x}(2) | \mathbf{h}) \leq \exp\left(-\sum_{i=1}^{L} |h_i|^2 |d_i|^2\right)$$

$$\min_{\mathbf{h} \notin \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right]$$

$$\mathbf{h}: \sum_{i=1}^{L} \log \left(1 + \mathsf{SNR}|h_i|^2\right) > R$$

# **Smart Union Bound**

$$\diamond \ \mathbb{P}(\text{outage}) \ \leq \ \mathbb{P}_e \ \leq \ \mathbb{P}(\text{outage}) \ + \ \mathbb{P}(\text{error}|\text{no-outage})$$

- We want the second term to decay exponentially in SNR
  - Look at the union bound
  - Each pairwise error should decay exponentially in SNR
- $\diamond$  Let  $\mathbf{d} = x(1) x(2)$  be the difference codeword (space-only)

$$\mathbb{P}_{e}(x(1) \to x(2) | \mathbf{h}) \leq \exp\left(-\sum_{i=1}^{L} |h_{i}|^{2} |d_{i}|^{2}\right)$$

$$\min_{\mathbf{h} \notin \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right]$$

$$\mathbf{h} : \sum_{i=1}^{L} \log \left( 1 + \mathsf{SNR} |h_i|^2 \right) > R$$

$$\begin{split} & \min_{\mathbf{h} \notin \text{outage}} \left[ \sum_{i=1}^L |h_i|^2 |d_i|^2 \right] \\ & \mathbf{h} : \ \sum_{i=1}^L \log \left( 1 + \mathsf{SNR} |h_i|^2 \right) > R \end{split}$$

- Outage condition independent of the distribution of h
  - Code construction is universal
  - Viewpoint taken by (Wes95, KW03)
- Contrast with the traditional analysis: average over the channel statistics

$$\min_{\mathbf{h} \neq \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right] > 1$$

$$\mathbf{h}: \ \sum_{i=1}^{L} \log \left(1 + \mathsf{SNR}|h_i|^2\right) > R$$

- Related to the water-pouring problem
  - Constraint function and objective function reversed

$$|h_i|^2 = \left(\frac{1}{\lambda} - |d_i|^2\right)^+$$

Turns out to be the product distance:

$$|d_1|^2 |d_2|^2 \cdots |d_L|^2 \ge \frac{1}{2^R}$$

- Also a necessary condition.
- Same as the traditional criterion for i.i.d. Rayleigh fading

$$\min_{\mathbf{h} \neq \text{outage}} \left[ \sum_{i=1}^{L} |h_i|^2 |d_i|^2 \right] > 1$$

$$\mathbf{h}: \ \sum_{i=1}^{L} \log \left(1 + \mathsf{SNR}|h_i|^2\right) > R$$

- Related to the water-pouring problem
  - Constraint function and objective function reversed

$$|h_i|^2 = \left(\frac{1}{\lambda} - |d_i|^2\right)^+$$

Turns out to be the product distance:

$$|d_1|^2 |d_2|^2 \cdots |d_L|^2 \ge \frac{1}{2^R}$$

- Also a necessary condition.
- Same as the traditional criterion for i.i.d. Rayleigh fading

# **Revisit Code Design Criterion**

$$|d_1|^2|d_2|^2\cdots|d_L|^2 \ge \frac{1}{2^R}$$

### Nonzero product distance

- Need each sub-channel to have all the information
- So, alphabet size 2<sup>R</sup>
- Can take it to be a QAM (Q) with 2<sup>R</sup> points (for each sub-channel)

Turns out to be the product distance:

$$|d_1|^2 |d_2|^2 \cdots |d_L|^2 \ge \frac{1}{2^R}$$

- Also a necessary condition.
- Same as the traditional criterion for i.i.d. Rayleigh fading

# **Revisit Code Design Criterion**

$$|d_1|^2|d_2|^2\cdots|d_L|^2 \ge \frac{1}{2^R}$$

## Nonzero product distance

- Need each sub-channel to have all the information
- So, alphabet size 2<sup>R</sup>
- Can take it to be a QAM (Q) with 2<sup>R</sup> points (for each sub-channel)

# **Implications on Code Structure**

## Nonzero product distance

- Need each sub-channel to have all the information
- So, alphabet size 2<sup>R</sup>
- Can take it to be a QAM ( $\mathbb{Q}$ ) with  $2^R$  points

## Mapping across sub-channels

- Each point in the QAM for any sub-channel should represent the entire codeword
- So, code is L-1 permutations of  $\mathbb{Q}$

# **Repetition Coding**

the identity permutation



$$\diamond L = 2$$
, product distance  $= \frac{1}{2^{2R}}$ 

 $\circ$  We want: product distance  $> \frac{1}{2^R}$ 

# **Key Property of Permutations**



Two adjacent points should be mapped as far apart as possible

#### **Random Permutation Codes**

- Look at the ensemble of all permutation codes
  - huge number of permutations:  $(2^R!)^{L-1}$
  - average product distance under appropriate measure
- There exists a permutation which satisfies the product distance
- Conclusion: A permutation code achieves universally the outage curve

# **Key Property of Permutations**



Two adjacent points should be mapped as far apart as possible

## **Random Permutation Codes**

- Look at the ensemble of all permutation codes
  - huge number of permutations:  $(2^R!)^{L-1}$
  - average product distance under appropriate measure
- There exists a permutation which satisfies the product distance
- Conclusion: A permutation code achieves universally the outage curve

# An Example

o 16-point Permutation Code



## 2 Sub-Channels

 $\diamond \; \; \text{Transmit} \; q \in \mathbb{Q} \; \text{and} \; f(q) \in \mathbb{Q} \; \text{over the two sub-channels}$ 

$$q = a + ib$$
,  $a, b$  integers  
 $y_1 = h_1 (a + ib) + w_1$   
 $y_2 = h_2 f(a + ib) + w_2$ 

# **Effect of the Fading Channel**

- $\diamond$  Consider binary representation of integers a and b
  - require  $n = \frac{R}{2}$  bits
- Additive Gaussian noise very likely to move within neighboring integers

#### 2-sub Channels

 $\diamond$  Transmit  $q \in \mathbb{Q}$  and  $f(q) \in \mathbb{Q}$  over the two sub-channels

$$q = a + ib$$
,  $a, b$  integers  
 $y_1 = h_1 (a + ib) + w_1$   
 $y_2 = h_2 f(a + ib) + w_2$ 

 $\diamond$  Look at permutations  $(\tilde{f})$  of real and imaginary values

$$\tilde{y}_1 = |h_1| (a+ib) + \tilde{w}_1$$
  
 $\tilde{y}_2 = |h_2| (\tilde{f}(a) + i\tilde{f}(b)) + \tilde{w}_2$ 

# Effect of the Fading Channel

- $\diamond$  Consider binary representation of integers a and b
  - require  $n = \frac{R}{2}$  bits
- Additive Gaussian noise very likely to move within neighboring integers

# Effect of the Fading Channel

Consider binary representation of integers a and b

- require 
$$n = \frac{R}{2}$$
 bits

- Additive Gaussian noise very likely to move to neighboring integers
- Effect of the multiplicative channel: distort the LSBs

$$|h_1| \approx 2^{-k_1} \implies k_1 \text{ LSBs of } a \text{ and } b \text{ lost}$$
  
 $|h_2| \approx 2^{-k_2} \implies k_2 \text{ LSBs } f(a) \text{ and } f(b) \text{ lost}$ 

No outage condition:

$$|h_1||h_2| > \frac{2^{R/2}}{\mathsf{SNR}} \implies k_1 + k_2 \le n$$

#### **Bit Reversal Permutation**

 $\diamond$  Bit reversal:  $\tilde{f}(a)$  is bit reversal of a

## Encoding:

Same complexity as encoding a QAM

## Decoding:

- Use first sub-channel to determine MSBs of a and b
- Use second sub-channel to determine LSBs of a and b
- No outage condition means you recover all the bits

#### Bit Reversals

- Bit-reversal permutation code is approximately universal
- Bit-reversal with alternate bits flipped is even better:
- $\diamond$  Theorem: For every pair of integers  $a_1, a_2$  between 0 and  $2^R 1$ ,

$$|a_1 - a_2| \cdot |BR(a_1) - BR(a_2)| \ge \frac{2^R}{8}.$$

#### 3 Sub-Channels

- First sub-channel: identity permutation
- Second sub-channel: reverse the bits
- Third sub-channel: Pass the bits through the linear transformation

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## 3 Sub-Channels

- First sub-channel: identity permutation
- Second sub-channel: reverse the bits
- Third sub-channel: Pass the bits through the linear transformation

$$A_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

More generally,

$$A_{2n} = A_n \otimes \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \ldots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

- Open Questions:
  - What is the smallest field size q for which design exists?
  - Canonical representation for the designs?

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

- Related literature:
  - Random matrices  $A_n^{(1)}, \dots, A_n^{(L)}$

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

- Related literature:
  - Random matrices  $A_n^{(1)}, \ldots, A_n^{(L)}$
  - MDS (maximum distance separable) codes classical material in coding theory: Reed-Solomon codes

# A Conjecture for L=4

- $\diamond$  Need at least ternary representation of integers: so  $q \geq 3$
- Second sub-channel: reverse the ternary digits

$$\diamond$$
 Third sub-channel:  $A_{3n}^{(3)} = A_n^{(3)} \otimes \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 

$$\diamond$$
 Fourth sub-channel:  $A_{3n}^{(4)} = A_n^{(4)} \otimes \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ 

## **Approximately Universal Codes**

- A code is approximately universally if it is tradeoff optimal for every channel distribution
- Universal code design criterion

$$\lambda_1 \lambda_2 ... \lambda_{\min(n_r, n_t)} \ge \frac{1}{2^R}$$

- $\delta \lambda_1 \leq \ldots \leq \lambda_{n_t}$  are eigenvalues of  $\mathbf{D}\mathbf{D}^{\dagger}$ ,  $\mathbf{D} := \mathbf{X}(1) \mathbf{X}(2)$
- Need this criterion for every pair of codewords

# **Fading MIMO Channel**



$$\diamond y = Hx + w$$

- $\circ$  Entries of H have a joint distribution.
  - slow fading, coherent

## **Approximately Universal Codes**

- A code is approximately universally if it is tradeoff optimal for every channel distribution
- Universal code design criterion

$$\lambda_1 \lambda_2 ... \lambda_{\min(n_r, n_t)} \geq \frac{1}{2^R}$$

- $\delta \lambda_1 \leq \ldots \leq \lambda_{n_t}$  are eigenvalues of  $\mathbf{D}\mathbf{D}^{\dagger}, \ \mathbf{D} := \mathbf{X}(1) \mathbf{X}(2)$
- Need this criterion for every pair of codewords

# **Engineering Appeal**

 $\diamond$  Approximately Universal code over an  $n \times n$  channel is also approximately universal over every

 $n \times n_r$  channel

## **Approximately Universal Codes**

- A code is approximately universally if it is tradeoff optimal for every channel distribution
- Universal code design criterion

$$\lambda_1 \lambda_2 ... \lambda_{\min(n_r, n_t)} \geq \frac{1}{2^R}$$

- $\lambda_1 \leq \ldots \leq \lambda_{n_t}$  are eigenvalues of  $\mathbf{D}\mathbf{D}^{\dagger}$ ,  $\mathbf{D} := \mathbf{X}(1) \mathbf{X}(2)$
- Need this criterion for every pair of codewords

# **Engineering Appeal**

 $\diamond$  Approximately Universal code over an  $n \times n$  channel is also approximately universal over every

 $n \times n_r$  channel

# **Engineering Appeal**

 Approximately Universal code over an n × n channel is also approximately universal over every

 $n \times n_r$  channel

- Can use approximately universal code at the base station of downlink to transmit common information
  - code performance best possible for any number of receive antennas at the mobile users
  - code performance best possible with respect to the underlying statistical model of the fading channel

#### A Contrast

- $\diamond$  Consider a MISO channel:  $n_r = 1$
- Traditional design criterion for i.i.d. Rayleigh fading (TSC98)

maximize 
$$\lambda_1 \lambda_2 ... \lambda_{n_t}$$
 (determinant)

Universal design criterion

maximize  $\lambda_1$  (smallest singular value)

- have to protect against the worst case channel

Need rotational invariance

$$XX^* = SNR I$$

- full rate orthogonal designs are universal

Need rotational invariance

$$XX^* = SNR I$$

- full rate orthogonal designs are universal
- Nearly rotational invariant: codes based on number theory
  - Tilted QAM code (YW03, DV03), Golden code (BRV04), codes based on cyclic division algebra (Eli04)
  - Universally tradeoff optimal, but hard to decode

Need rotational invariance

$$XX^* = SNR I$$

full rate orthogonal decions are universal

#### Main Result:

- Universal tradeoff optimal designs based on parallel channel codes
  - \* engineering value: code is robust to channel modeling errors
  - \* Simple encoding and decoding of permutation codes

## **Restricted Universality**

#### Setting:

- coherent communication over short block length at high SNR
- universal tradeoff performance over a restricted class of channels

#### Main Result:

- Universal tradeoff optimal designs based on parallel channel codes
  - \* engineering value: code is robust to channel modeling errors
  - \* Simple encoding and decoding of permutation codes

#### MISO Channel Revisited

$$\mathbf{y}[m] = \mathbf{h}^* \mathbf{x}[m] + \mathbf{w}[m]$$

- $\diamond$  Suppose  $h_1, \ldots, h_{n_t}$  are i.i.d.
  - no antenna is particularly vulnerable
- Universality Result:

It is tradeoff optimal to use one transmit antenna at a time

- Converts MISO channel into a parallel channel
  - can use the simple universal permutation codes

### **Restricted Class of Channels**

 $H = U\Lambda V^*$ 

- $\diamond$   $\mathbf{V}^*$  is the Haar measure on  $SU(n_t)$  and  $\Lambda$  independent of  $\mathbf{V}$
- o each transmit direction is equally likely
- o i.i.d. Rayleigh fading belongs to this class

#### **D-BLAST Architecture**

D-BLAST scheme for 2 transmit antennas:

$$X = \begin{bmatrix} 0 & a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 & 0 \end{bmatrix}$$

- Successive cancellation of streams
  - converts MIMO channel to a parallel channel
  - can use permutation codes
- Almost universally tradeoff optimal
  - initialization overhead

### D-BLAST with ML decoding

$$X = \left[ \begin{array}{ccc} 0 & a_2 & b_2 \\ a_1 & b_1 & 0 \end{array} \right]$$

- Consider joint ML decoding of both streams
- Claim: Universal tradeoff performance same as that with successive cancellation
- Main result:

Universal tradeoff performance over the restricted class of channels

## V-Blast with ML decoding



Send QAM independently across antennas (space only code)

# Reprise

Considered universal tradeoff optimality

- Main results:
- Simple permutation codes for the parallel channel
- For a restricted class of MIMO channels

Universal tradeoff optimality of D-BLAST and V-BLAST

Reference:

Chapter 9 of *Fundamentals of Wireless Communication*,
D. Tse and P. Viswanath, Cambridge University Press, 2005.

### Reprise

Approximately universal codes

- Main results:
- Simple permutation codes for the parallel channel
- For a restricted class of MIMO channels

Universal tradeoff optimality of D-BLAST and V-BLAST

## Reprise

Considered universal tradeoff optimality

- Main results:
- Simple permutation codes for the parallel channel
- For a restricted class of MIMO channels

Universal tradeoff optimality of D-BLAST and V-BLAST

Reference:

Chapter 9 of *Fundamentals of Wireless Communication*,
D. Tse and P. Viswanath, Cambridge University Press, 2005.

# V-Blast with ML decoding



Send QAM independently across antennas (space only code)

# $2 \times 2$ i.i.d. Rayleigh channel



#### MISO Channel Revisited

$$\mathbf{y}[m] = \mathbf{h}^* \mathbf{x}[m] + \mathbf{w}[m]$$

- $\diamond$  Suppose  $h_1, \ldots, h_{n_t}$  are i.i.d.
  - no antenna is particularly vulnerable
- Universality Result:

It is tradeoff optimal to use one transmit antenna at a time

- Converts MISO channel into a parallel channel
  - can use the simple universal permutation codes

Need rotational invariance

$$XX^* = SNR I$$

- full rate orthogonal designs are universal

### **Approximately Universal Codes**

- A code is approximately universally if it is tradeoff optimal for every channel distribution
- Universal code design criterion

$$\lambda_1 \lambda_2 ... \lambda_{\min(n_r, n_t)} \ge \frac{1}{2^R}$$

- $\delta \lambda_1 \leq \ldots \leq \lambda_{n_t}$  are eigenvalues of  $\mathbf{D}\mathbf{D}^{\dagger}$ ,  $\mathbf{D} := \mathbf{X}(1) \mathbf{X}(2)$
- Need this criterion for every pair of codewords

### A Combinatorial Open Problem

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

the first  $k_j$  rows of  $A_j$ , with  $j = 1 \dots L$ , should span  $\mathbb{F}_q$ 

- Related literature:
  - Random matrices  $A_n^{(1)}, \ldots, A_n^{(L)}$
  - MDS (maximum distance separable) codes classical material in coding theory: Reed-Solomon codes

### A Combinatorial Open Problem

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

the first  $k_j$  rows of  $A_j$ , with  $j = 1 \dots L$ , should span  $\mathbb{F}_q$ 

#### 3 Sub-Channels

- First sub-channel: identity permutation
- Second sub-channel: reverse the bits
- Third sub-channel: Pass the bits through the linear transformation

$$A_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

More generally,

$$A_{2n} = A_n \otimes \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

#### 3 Sub-Channels

- First sub-channel: identity permutation
- Second sub-channel: reverse the bits
- Third sub-channel: Pass the bits through the linear transformation

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### 3 Sub-Channels

- First sub-channel: identity permutation
- Second sub-channel: reverse the bits
- Third sub-channel: Pass the bits through the linear transformation

$$A_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

More generally,

$$A_{2n} = A_n \otimes \left[ \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

### A Combinatorial Open Problem

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \ldots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

the first  $k_j$  rows of  $A_j$ , with  $j = 1 \dots L$ , should span  $\mathbb{F}_q$ 

### A Combinatorial Open Problem

 $\diamond$  Combinatorial Design: Matrices  $A_n^{(1)}, \dots, A_n^{(L)}$  with elements from finite field  $\mathbb{F}_q$  of size q such that

the first  $k_j$  rows of  $A_j$ , with  $j = 1 \dots L$ , should span  $\mathbb{F}_q$ 

- Open Questions:
  - What is the smallest field size q for which design exists?
  - Canonical representation for the designs?