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Graphical Models

Bayes Nets:

Markov Random Fields:

Factor Graphs:
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Algorithms in Graphical Models

Iterated Conditional Modes

Gibbs sampling

Expectation Maximization

Mean Field

Sum-Product
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Some Questions

What do the algorithms do ?

How do we find the “best” model?

The problems are very much connected
Non-equivalent representations
Finding a good graph!
Finding a good (small) representation
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Graphical Models for Coding and Linear Systems

Channel
Transmitter Receiver

c ε yC

Main problem:

ĉ = argmaxc∈C

{

p(y|c)
}

⇒ Choose C, a graphical model for C and your favorite inference

algorithm.
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Choices, Choices, . . . and some structure

We can choose the time axis freely!

We can give the code a suitable structure!

⇒ We choose the code as a linear space over a finite field F

(think F2).

Networks and network coding → linear behaviors.
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Examples of graphs:

ci

f

fi

c

s

i

All graphs represent indicator functions IC(c) =

{

1 c ∈ C
0 otherwise
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Interesting problems

Find the “best” graph (expansion, girth, structure . . . )

Understand the behavior of algorithms (random graphs, threshold

effects, graph covers . . . )

Graphical models for systems (Equalization, timing, estimation . . . )

The main problem in this talk: State space realizations
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How to marry a given linear space to a given graph structure

Graph Code
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The classical example: Trellises

s si

fi

ci

i+1

0

0

1

1

0
0

1

1

State variables: si ∈ Si

This is a factor graph for an indicator function IC such that: IC(c, s) =
∏n−1

i=0 ICi
(si, ci, si+1) and IC̄(c, s) = 1 ⇒ IC(c) = 1

How should we choose the “local” checks ICi
(si, ci, si+1) such that

Si are small?
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Choices, choices . . .

Example:

G =







1 1 1 0 0 0
0 0 1 1 1 0
0 1 0 0 1 1





 G =







1 0 1 1 0 0
0 1 0 1 1 0
0 0 1 0 1 1






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The Product Construction of Trellises

=

,

For trellis sections Ti and T ′
i :

Ti ⊂ Si × F2 × Si+1 T ′
i ⊂ S ′

i × F2 × S ′
i+1

Ti⊗T ′
i =

{

((si, s
′
i), ci + c′i, (si, s

′
i)) ⊂ (Si × Si) × F2 × (S ′

i+1 × S ′
i+1)

}
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Minimal Trellises and the product

1 1 1 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

G=

Each elementary trellis corresponds to a one-dimensional space
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A Factorization Theorem

A “prime trellis” is a trellis representing a one-dimesional space.

Any linear trellis is obtainable as product of “prime” trellises Pi.

Morover, the trellis product is is commutative and the set of linear

trellises constitutes a Unique Factorization Domain: T =
∏

i P
ei
i

There exists a uniformly smallest “minimal” trellis corresponding to

a decomposition of a space into “minimal” one-dimensional spaces!
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The product construction for other graphs:

* =
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Other graphs?

Tail-biting trellises:

Prime trellises:

16



Tail-biting trellises

The factorization theorem can be used to indentify a set P on at

most n prime trellises which contribute to the minimal tail-biting

trellis.

G =





















1 1 1 0 0 0
0 1 0 0 1 1
0 0 1 1 1 0
1 0 0 1 0 1
1 1 0 0 1 1
1 0 0 1 0 1




















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One more case

Primes:
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2,3,5,7,11,.....

Any graph comes with a specific set of prime

trellises! Characterizing these primes is a cen-

tral problem for a structure theory of state

space realizations.

For trees the set of primes is finite!

For graphs with cycles.... ???????
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Duality and a Normalization

linear space C and an inner product 〈·, ·〉 ⇒ C⊥

From now on:

All state variables: degree two

All observed variables: degree one

Transformations:
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A canonical dualization

s

ss

sl
i

kj c

s

ss

sl
i

kj c

f g

Function f is an indicator function for a linear space V :

f(si, sj, sl, sk, c) = IV (si, sj, sl, sk, c) =

{

1 (si, sj, sl, sk, c) ∈ V

0 otherwise
g(si, sj, sl, sk, c) = IV ⊥(si, sj, sl, sk, c)
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Duality and a normalization
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Duality

Theorem[Forney] If we dualize the individual

checks in a state space realization for a linear

space V we obtain a state space realization for

the dual space V ⊥.
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Minimal realizations

A crucial operation: Merging of states

a) b) c)

Minimal state space realizations can be obained by merging non-
minimal realizations.

— easy for trellises!

— in general a global operation!
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Merging in graphs with cycles

Example:

G =











1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0











u

u

v

v

1

2

3

4

5

6

1

3

4

v

u

u

u

u

4w

3uw

w 1
v2 w2
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Merging in graphs with cycles

A global problem.......

G =











1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0











00
11
11
00
10
01
01
10

00
11
11
00
10
01
01
10

1 1

1

1 1

0 0

0

00

00

00

00

10

10

10
01

01

01

11

11

11
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Merging in graphs with cycles

Theorem If a given state space realization G

contains a pair of mergeable vertices , then the

canonical dual state space H realization is ei-

ther disconnected or noton-to-one.

An Algorithm

1. Given G construct H

2. If G or H is not one-to-one or is disconnected ⇒ merge ver-
tices

3. Reconstruct the canonical dual to the changed G ⇒ GOTO 2.

The running time of this algorithm is polynomial in the number of
checks.
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Applications

• Coding Theory

• Control Theory

• Linear Systems

• Network Coding
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Problem Description A

S

S

S
R

R

R

1

2

3

1

2

3

A network

Vertices: V

Edges: E ⊆ V × V , e = (v, u) ∈ E

Edge capacity: C(e)

Network: G = (V, E)

Source nodes: {v1, v2, . . . , vN} ⊆ V

Sink nodes: {u1, u2, . . . , uK} ⊆ V
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Input random processes at v:
X (v) = {X(v,1), X(v,2), . . . , X(v, µ(v)}

Output random processes at u:
Z (u) = {Z(u,1), Z(u,2), . . . , Z(u, ν(u))}

Random processes on edges: Y (e)

A connection:
c = (v, u, X (v, u)), X (v, u) ⊆ X (v)

A connection is established if Z (u) ⊃ X (v, u)

Set of connections: C

The pair (G, C ) defines a network coding problem .
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Is the problem (G, C ) solvable?

How do we find a solution?
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An Example

Receiver 1 Receiver 2

Sender 1 Sender 2

[1] Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow”, IEEE-IT, vol. 46, pp. 1204-1216, 2000

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai “Linear Network Coding”,
preprint, 2000

32



Linear Network Codes

C(e) = 1 (links have the same capacity)
H(X(v, i)) = 1 (sources have the same rate)
The X(v, i) are mutually independent.
Vector symbols of length m elements in F2m.

e e
X(v,i)

Y(e )Y(e )
21

e3 Y(e )3

21

Y (e3) =
∑

i αiX(v, i) +
∑

j=1,2 βjY (ej)
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A linear system

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: x = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: z = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = xM ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

Mi,j ∈ F2[ξ]
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An alg. Min-Cut Max-Flow condition

Let a linear network be given. The following three statements are
equivalent:

1. A point-to-point connection c = (v, v′, X (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

|X (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero
over the ring F2[ξ]

3. ⇒ We have to study the solution sets of polynomial equations.
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Algebraic characterization: A network problem P is solvable if and

only if an associated algebraic variety (V (P )) is not empty.

Receiver based recovery: A network problem P can be set up robustly!

The collection of local codes does not have to change in order to pro-

tect against link failures - provided there exists a solution to the net-

work problem for these link failures.

Network management: Tight bounds can be given for the number of

different overall behaviors of the network in order to pretect against

various link failure scenarios. (ISIT 02, Ho, Médard, K.)

Connections to linear systems, codes......and state space realizations
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Graphical models

The network as a linear system:

+ += = = =
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A state space description

01
10
11

00 00
10
01
11

11
0 0

01
10
11

00 00
10
01
11

a b

a=1, b=0

1

1

1

1 1

0

0

1 0

1 10 0

11
0 0

Embedding a code with generator matrix:

G =

(

1 0 10 10
0 1 01 01

)
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The product construction

* =

01
10
11

00 00
10
01
11

11
0 0

1
0 0

10

00 00
10

1
0 0

00

01
01
00
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Packet routing and the product construction

a b

a

a

a b

b

b

b a

*
=

1
0 0

10

00 00
10

1
0 0

00

01
01
00

,

The product construction is equivalent to the “routing” solution for
the network problem - network coding corresponds to a new “prime”.
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Finding good networks

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

In general hard to find the “best” network.

Finding a non-mergable network a good intermediate solution!

This can be done in polynomial time.
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Duality and Reversability

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

For routing: We can reverse the role of the sinks and the sources......

Network coding: ??????
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Duality and Reversability

Theorem If a network can accomodate disjoint connections between a

set of sources and sinks it is always possible to reverse the operation

of the network to interchange sinks and sources. The network code

achieving the reverse operation corresponds to the canonical dual of

the state space description of the network code.

f f

The embedded linear space is self dual and generated by:

G =







1 0 1 0 0 0
0 1 0 0 0 1
0 0 0 1 1 0






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Networks for codes - codes for networks

Finding an efficient transmission strategy ⇔ Finding a graphical

model with small state spaces

Routing data streams ⇔ Product construction of state space real-

izations.

Network coding is closely related to the theory of linear systems on

graphs.
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Conclusions

• A structure theory of graphical models for linear spaces is evolv-

ing

• Applications in linear systems, coding, control....

• Network coding closely related to graphical models

• This is a big open field with many ramifications ........

............and a lot of fun!
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