Graphical Models, Variational Inference
and Nonparametric Priors

Michael |. Jordan

Computer Science Division and Department of Statistics
University of California, Berkeley

http://www.cs.berkeley.edu/~jordan

Joint work with: Martin Wainwright and David Blel



Graphical Models Past, Present and Future

e Some virtues

— toolbox for modular design of probabilistic systems
— simple algorithms—often surprisingly effective
— unifying framework
e Some limitations
— restriction to parametric models

— convergence/accuracy of algorithms?

e Need to strengthen the links with optimization theory and statistics



Outline

Some examples

Exponential families

Variational representation of exponential families
Variational relaxations (non-convex and convex)

Nonparametric methods (Chinese restaurant process)



Directed Graphical Models

e Given a graph G = (V,€), where each node v € V is associated with a
random variable X,:

X4
X2

o

X3 Xs

e The joint distribution on (Xi, Xs,...,Xn) factorizes according to the
“parent-of” relation defined by the edges £&:

p($1,$2,$3,$4,$5,$6;9) — p(xlael) p(372 ‘ C131;92)

p(x3|71;03) p(ra|w2;04) P(75 | 23;05) D(76 | T2, 753 06)



Plates

e A plate is a "macro’ that allows subgraphs to be replicated:

O

O
1

or
e Graphical representation of an exchangeability assumption
(X17X27"'7XN)
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Undirected Graphical Models

e Given a graph G = (V,&), where each node v € V is associated with a
random variable X :

X4
X2
X
X3 Xs

e The joint distribution on (X1, X5,..., Xn) factorizes according to the set
of cliques defined by the edges &:

1

p(x1,x2, T3, Ta, 5, T6;0) = = Y(T1,22;012) Y(21,T3;013)
A

P(x2, xa;024) P (x3,x5;035) Y(T2, x5, T6; O256)



Examples

Hidden Markov models
Phylogenies

Hidden Markov phylogenies
Low-density parity check codes
Medical diagnosis

Latent Dirichlet allocation models



Hidden Markov Models
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e Generally wish to compute p(z; | y1,vy2, ..., Y1)

e For discrete X;, widely used in speech modeling, bioinformatics, etc., to
represent segments of a string

e For continuous Xj, this is the Kalman filter/smoother



Hidden Markov Model Variations
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Phylogenies

The shaded nodes represent the observed nucleotides at a given site for a

set of organisms
Site independence model (note the plate)
The unshaded nodes represent putative ancestral nucleotides

Computing the likelihood involves summing over the unshaded nodes
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Finding Genes in Genome Sequence

e Where do genes start and end? Where are the exon/intron boundaries
within genes?

e Current gene finders are based on hidden Markov models

— they have accuracies in the 30%-50% range

e Multiple species data is becoming available

— how can we fuse data from multiple species to improve gene finding?
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Hidden Markov Phylogeny
(McAuliffe, Pachter, & Jordan, 2003)

~()
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e This yields a gene finder that exploits evolutionary constraints
— evolutionary rate is state-dependent
— (edges from state to nodes in phylogeny are omitted for simplicity)

e Based on sequence data from 12-15 primate species, we obtain a nucleotide
sensitivity of 100%, with a specificity of 89%

— (GENSCAN yields a sensitivity of 45%, with a specificity of 34%
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Low-Density Parity Check Codes

L1

2134
)
T3 ® 2956
L4 2135
L5

2246
L6

e The z; denote the unknown message; the z;;, denote the parity checks

e Compute the maximum a posteriori message

— exact algorithms and MCMC algorithms are not viable
— a variational algorithm ( “max-product algorithm™) is used instead, yielding
impressive results
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Quick Medical Reference (QMR) model
(Jaakkola & Jordan, 1999)

e A probabilistic graphical model for diagnosis with 600 disease nodes, 4000
finding nodes

diseases
dl dn

O

findings
e Node probabilities p( f;|d) were assessed from an expert (Shwe, et al., 1991)

e \Want to compute posteriors: p(d;|f)

e Is this tractable?

14



Quick Medical Reference (cont.)

Diseases

Findings

e Exact algorithms would take years to run
e MCMC algorithms take hours to run, and convergence is difficult to assess

e A mean field variational method due to Jaakkola and Jordan (1999)
computes approximate posteriors in less than a second
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Probabilistic Modeling of Documents

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center,
Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt
that we had a real opportunity to make a mark on the future of the performing arts
with these grants an act every bit as important as our traditional areas of support
in health, medical research, education and the social services,” Hearst Foundation
President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's
share will be $200,000 for its new building, which will house young artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will
receive $400,000 each. The Juilliard School, where music and the performing arts are
taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln
Center Consolidated Corporate Fund, will make its usual annual $100,000 donation,
too.

Goal: a joint probability distribution over a corpus of such entities that
can support activities of search, indexing, summarization, classification, text
analysis, information extraction, etc

16



Latent Dirichlet Allocation (LDA) Model
(Blei, Jordan, & Ng 2003)
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e Random variables:

— A word is represented as a multinomial random variable w
— A topic is represented as a multinomial random variable z
— A document is represented as a Dirichlet random variable 6

e Plates:

— repeated sampling of Dirichlet document variable within corpus
— repeated sampling of multinomial topic variable within documents
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The Topic Simplex

e Each corner of the simplex corresponds to a topic—a component of the
vector z:

topic 1

topic simplex

word simplex

The topic simplex for £k = 3.

e A document is modeled as a point in the simplex—a multinomial distribution
over topics

e A corpus is modeled as a Dirichlet distribution on the simplex
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Nematode Abstracts

e A database of abstracts from articles on nematode biology

e Four of the resulting topics:

“Signaling” “Genetics” “Reproduction” “Proteomics”
RECEPTOR CHROMOSOME MALE ELEGANS
RESPONSE RECOMBINATION  SEX ACTIVITY
ELEGANS MEIOTIC SPERM BINDING
ACETYLCHOLINE ELEGANS HERMAPHRODITES NEMATODE
HABITUATION DEFICIENCIES TRA PROTEIN
RESPONSES CAENORHABDITIS FEM ELT
SIGNALING DUPLICATIONS ELEGANS PURIFIED
RELEASE LEFT ANIMALS KDA

LAG LINKAGE GENES AFFINITY
GLUTAMATE MAP DETERMINATION ENZYME
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Probabilistic Modeling of Documents/Images

N

TTNA

SCULPTURE, STATUE, STONE

e Goal: a joint probability distribution that can support activities of search,
indexing, text/image analysis, information extraction, etc

e Data are 11,000 images and their captions

e Images are segmented into regions, and each region is represented as a
47-dimensional Gaussian vector
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Correspondence LDA model
(Blei & Jordan, 2003)
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e Image-topics and word-topics

— a word is represented as a multinomial random variable w

— an image region is represented as a Gaussian random variable r
— a word-topic is represented as a multinomial random variable z

— an image-topic is represented as a multinomial random variable y

e A mean field variational algorithm is used for inference
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Automatic annotation

True caption True caption

market people scotland water

Corr-LDA Corr-LDA

people market pattern textile display scotland water flowers hills tree
GM-LDA GM-LDA

people tree light sky water tree water people mountain sky
GM-Mixture GM-Mixture

people market street costume temple water sky clouds sunset scotland

(Use the top five words from p(w|r) to annotate an image.)
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Text-based image retrieval

Candy Sunset People & Fish

1. Compute p(w|r,) for each image in the test set.

2. Rank the images in order of conditional likelihood.
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Inference

e Conditioning

X4
X2

e

X3 Xs

e Marginalization:

p(x1,x6) = L2 L3 /934 L5 p(z1)p(x2|z1)p(xs|z1)p(za|z2)p(T5|23) P (26|72, T5)

= #a) [ plaake) / plasfen) / plaale) / plasles)planfen, @)

e Posterior probabilities:

p(ﬂUl, 5136)
p(l’fs)

p(z1|we) =
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Inference Algorithms

e [Exact algorithms

— elimination algorithm
— sum-product algorithm
— junction tree algorithm

e Sampling algorithms

— importance sampling
— Markov chain Monte Carlo (MCMC)

e Variational algorithms

— mean field methods (e.g., Jordan et al., 1999)
— sum-product algorithm and variations

(e.g., Yedidia et al., 2001; Minka, 2001; McEliece & Yildirim, 2002)
— semidefinite relaxations (Wainwright & Jordan, 2003)

25



Sum-product Algorithm

; Ox Ox

My, (X2) y My, (X2) § A My (X1)
. Ox Ox
My (X3) y |4 Ma(X2)
X3
Xa Xs
(a) (b) (c)

e Essentially the elimination algorithm along all possible paths

— marginalization over a variable creates an intermediate term (“message”)
— messages are cached and reused

e T[he junction tree algorithm generalizes this to clique trees
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Variational Algorithms

e T[hree steps:

— convert the inference problem into an optimization problem
— relax the optimization problem into a simplified optimization problem
— solve the relaxation

e Many variations

— mean field algorithms (pretend the law of large numbers holds)
— sum-product algorithm (pretend the graph is a tree)

27



Conjugate Duality Refresher

For a convex function f(x), we have:
fla) = sup {pe — (1)}
Fip) = sup{pe— fz)},
where f*(u) is the conjugate function.
E.g., conjugate duality for e”:

e’ = sup {px — plogu + p}
o

Implies a family of bounds, indexed by the “variational parameter” pu:

e’ > px — plogp + 1
Setting v equal to one yields a simple “convexity bound”:

e >x+1
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Mean Field Intuition

Recall the family of bounds:

e" > pxr — plogp+ p

Useful in a probabilistic setting if there is a concentration in .

— the bound is tight for x ~ log 1
— turns a nonlinearity into a linearity

Need to find a value of i that allows us to exploit the (posited) concentration

in x.

When there are many coupled variables, need to solve a system of equations

involving multiple variational parameters {1}, one for each variable.
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Example—The Ising Model

e Binary variables on a graph with pairwise cliques

= {zs|seV }U{zx: | (s,t) € E}

= V U FE
— {Oal}n

30



Inference for Ising Model

e Gibbs sampler

1 ifu<{l+exp[—(fs+ Zt@\/(s) Oste)]}

Tg .
0 otherwise

where u ~ U(0,1).

e Naive mean field algorithm

L < {1+eXp[—(93—l— Z 93tut)}}1,

teN (s)

where us € [0,1] are variational parameters.

Y
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Inference for Ising model (cont.)

e Sum-product algorithm

pis(Ts) 4 Z{Hst:vsazé H /Lut(x;f)}

,us(xs) X 93373 H ,uts(xs)a

where us € [0,1] and pg € [0, 1] are variational parameters.
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Exponential Representations

e Parameterized family of distributions:

p(X ‘9 — eXp{ZeaCba - (I)( )}

e Cumulant generating function (aka, log partition function):

®0) = log( > exp{Zeaqﬁa

xeXxn

{falael}
{0, |ael}

sufficient statistics (aka, potential functions)
canonical parameters

¢
0
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Variational Approach

e Basic idea: Represent a quantity of interest z as the solution of an
optimization problem:

— study Zz via the optimization problem.
— approximate z by approximating the optimization problem.

34



Variational Approach

Basic idea: Represent a quantity of interest z as the solution of an
optimization problem:

— study Zz via the optimization problem.
— approximate z by approximating the optimization problem.

Goal: Obtain a variational representation for:

— the log partition function.
— the inference problem of computing i, := E|d(x)].

35



The Marginal Polytope

e Dual perspective: Define the optimization problem in terms of only the
mean parameters:

o = 3 p(x)ga(x)

e Question: What set do these mean parameters range over?

36



The Marginal Polytope

Dual perspective: Define the optimization problem in terms of only the

mean parameters:

o = 3 p()da(x)

Question: What set do these mean parameters range over?

Define M(G; ¢) as the set of realizable or globally consistent marginals:

M(G;p) = {peR | p= " px)d(x)

xeXxn

for some p(-)}

For discrete families, we refer to this set as the marginal polytope, and

denote it as MARG(G; ¢)
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Ising Model Example

Potentials ¢ ={{xs|seV} U {xsz:|(s,t) € £}
Relevant marginals  pu, = Eg|zg] pst = Eglrszy

e Associated constraint set is known as the correlation polytope or the binary
quadric polytope. (e.g. Deza & Laurent, 1997)
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Geometry and Moment Mapping

MARG(G; @) \
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The Conjugate Dual of the Log Partition Function

Given p € MARG(G; ¢),

parameter.

let O(u) denote the corresponding canonical

Compute the conjugate dual:

() =

max  {(u, 0) — @(0)}

s 0(p)) = @(0(w)) -

The entropy of a distribution in the exponential family:

H(p(x;6(p)))

l.e., for u € MARG(G; ¢),
entropy.

= — > p(x:0(p)log p(x; (1))

xeXxn

— w8 — B0}

the conjugate dual function is just the negative
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Variational Principle in Terms of Marginals

e It turns out that outside of MARG(G; ¢), the conjugate dual function is
infinite. Thus:

50 — {;fo(mx;e(u))) :tﬁeiils\g@@(c;;@
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Variational Principle in Terms of Marginals

e It turns out that outside of MARG(G; ¢), the conjugate dual function is
infinite. Thus:

v [=H@0(p)) i p € MARG(G; ¢)
O (p) = 400 otherwise.

e Plugging in to the general conjugacy formula, this leads to a representation
of ® in terms of ®*:

(6 — 6y — P*
(0) geMﬁ%}ia;@ {{u, 0) (w)}

J/

-~/

convex optimization problem over

log partition function :
marginal polytope
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Variational Principle in Terms of Marginals

e It turns out that outside of MARG(G; ¢), the conjugate dual function is
infinite. Thus:

o) — {—H(p(X;Q(M))) if 1 € MARG(G; ¢)

+ o0 otherwise.

e Plugging in to the general conjugacy formula, this leads to a representation
of ® in terms of ®*:

(0 — 6) — P*
(0) geMggg(G@) {{u, 0) (w)}

7

~~

convex optimization problem over

log partition function :
marginal polytope

e Moreover, maximum is attained uniquely at desired marginals:

o = 3 p(x;0)pal(x) = Egldalx)].

xeXxn
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Mean Field Algorithms

e Let H represent a tractable subgraph—a subgraph of G over which it
feasible to perform exact calculations (e.g., the completely disconnected

graph).

e Set of exponential parameters corresponding to distributions structured
according to H:

EH) = {#€0|0,=0 V acI\ZI(H)},
where Z(H) is the subset of indices associated with cliques in H.

e Consider the set of all possible mean parameters that are realizable by
tractable distributions:

Miraet(GyH) = {p €RY| p = Eg[p(x)] for some § € E(H)}.
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Mean Field Algorithms (cont.)

e Since any p that arises from a tractable distribution is certainly a valid mean
parameter, the inclusion My,...(G; H) C MARG(G; ¢) always holds. l.e.,
Miract 1S @an inner approximation:

e Note that the set of tractable distributions is a non-convex set.
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Mean Field Algorithms (cont.)

e Optimizing over My,qct instead of M vyields an approximation to the
variational principle:
b (6 > max L0y — o7
(0) 2 e {(w, 0) (1)}

7

~~

optimization over set of tractable

log partition function L
&P distributions

e The entropy ®*(u) can be computed exactly because (by assumption) we
are restricted to tractable distributions

e \We obtain a lower bound on ®(6), because we optimize the same expression
as before over a smaller set.
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Naive Mean Field for the Ising Model

Completely disconnected graph Hy = (V,0)

Permissible parameters belong to the subspace £(Hy) := {0 € O | 04 =
0, V (s,t) € E}.

— the associated distributions are of the product form p(x; 0) = [ [, .\ p(zs; 05).

The approximate variational principle becomes:

max { Z 03M3+ Z est,us,ut_z [Us log /L3—|—(1—,u3) log(l—,us)] }

{psfEl0,1)" (s,t)€E sEV

Taking derivatives with respect to us yields the naive mean field updates
presented earlier.
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The Bethe Approximation
(Yedidia, Freeman & Weiss, 2001)

e Relax the constraint that the “marginals” that we obtain from the
optimization are consistent with any joint probability distribution (e.g.,

they need not be globally consistent)

— we'll refer to such quantities as pseudomarginals (often referred to as
beliefs)

e Focus on a pairwise undirected graphical model:

p(x;0) exp{Z@S(a}S)—l— Z Ost(xs, 1) }

seV (s,t)EE

e Denote the corresponding marginals as ps(xs) and pse(xs, T4).
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The Bethe Approximation (cont.)

e Consider the relaxed constraint set:

LOCAL(G) = {p>0]|) pu(xs) =1, Y pse(ws, xs) = pa(a) }.

e [hese constraints are necessary conditions on marginals; thus we obtain an
outer approximation to MARG(G; ¢):
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The Bethe Approximation (cont.)

e \We must approximate the entropy

— we're no longer working with tractable distributions
— indeed, we're no longer necessarily working with distributions at all

e [he Bethe entropy approximation:

HBethe(/L) = ZHS(,LLS)_ Z Ist(,ust)a

seV (s,t)EE

where I (pst) = Hs(ps) + Hy(pe) — Hse(ts¢) is the mutual information.

e This expression is exact on a tree; in general it is an approximation.
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The Bethe Approximation (cont.)

e Combining the entropy approximation H ge¢se With the tree-based constraint
set LOCAL(G) leads to the Bethe variational problem:

max {<97 ) + Z Hy(ps) — Z Ist(:ust)}-

pELOCAL(G) = (oo

e Although LOCAL(G) is a convex set, > v Hs(ps) = D5 pyep Lst(pst) is
not a convex function, so the problem overall is not convex.

e Taking derivatives with respect to the pseudomarginals vyields the
sum-product updates presented earlier.
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Summary of Current Variational Algorithms

Obtain algorithms by relaxation of original problem
— can consider inner or outer approximations to MARG(G; ¢)

— can approximate ®*(u) in various ways

The sum-product algorithm involves an outer approximation to
MARG(G; ¢), and the Bethe approximation to the entropy @®*(u)
(“tree-consistent” pseudomarginals)

Mean field algorithms involve an inner approximation to MARG(G; ¢). No

approximation is needed for the entropy ®*(u).

— thus, mean field algorithms yield a lower bound on the log partition
function (sum-product yields no bound).

Neither the mean field approach nor the Bethe approach yield a convex
relaxation.
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Convex Relaxations
(Wainwright & Jordan, 2003)

e Goal: Obtain upper bounds by a convex relaxation. This will yield an
algorithm with a single global optimum.

e Requirements:

— convex outer approximation to marginal polytope MARG(G; ¢).
— concave upper bound on entropy function —®* ().

e Solution:

— The covariance matrix must be positive semidefinite, thus the cone of all
positive semidefinite matrices provides an outer bound for the marginal
polytope

— The differential entropy of any random vector is upper-bounded by the
covariance-matched Gaussian

— So use the log determinant as an upper bound for the entropy
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Log-determinant Relaxation

o Let M;i(u) € OUT, where OUT is contained in the semidefinite cone

Log-det relaxation: For any such OUT, ®(0) is upper bounded by:

! 1 : n e

e Note: Such a log-det problem with LMI constraints can be solved efficiently
by an interior-point method. (Vandenberghe, Boyd, & Wu, 1998)
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Simple lllustration

Binary vector x on complete graph K.

Sum-product

0.8 b
0.6 :
0.4C* @
0.2
0 ! ! ! ! ! ! !
2 4 6 8 10 12 14 16
Semidefinite
1
0.8 i
06 :
0.4 5
0.2r i
0 !
2 4 6 8 10 12 14 16

(a) Weak

Sum-product

0.8
0.6¢

C
0.4
0.2

O | | | | | | |
2 4 6 8 10 12 14 16
Semidefinite

(b) Medium
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Strong Couplings

Sum-product

2 4 6 8 10 12 14 16

Semidefinite
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Bayesian Nonparametrics

e Dirichlet processes, Pdlya trees, tail-free distributions
e Urn models, Chinese restaurant process

e Measures on measures—provide flexible representations for structural and
parametric uncertainty

57



Example: Finite Mixture Models

Probabilistic model for clustering:

p(z|0) = Zp z|m) f x|z, B),

where f(x|z,3) are the mixture components, and 7 are the mixing
proportions

How to choose k, the number of mixture components?
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The Chinese Restaurant Process (CRP)

e A process in which n customers sit down in a Chinese restaurant with an
infinite number of tables

— first customer sits at the first table
— mth subsequent customer sits at a table drawn from the following

distribution:
p(previously occupied table i) = 5 g (3)
p(the next unoccupied table) = ——T—,

e Defines an exchangeable distribution on partitions of integers
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The CRP and Mixture Models

e [ he customers around a table form a cluster

— associate a mixture component with each table
— e.g., for Gaussian mixtures, sample 8 = (i, ) at each table to obtain a
mean and covariance matrix for that mixture component

e With this likelihood, and Eq. (3), the CRP yields a posterior probability

distribution on the number of mixture components (and on all of the other
parameters)
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Haplotype modeling with the CRP prior
(Xing, Sharan, & Jordan, 2003)

{A, a}
{C, ¢}

Consider M binary markers in a genomic region

There are 2™ possible haplotypes—i.e., states of a single chromosome

— but in fact, far fewer are seen in human populations

Given a sample of genotypes of a sample from a population (pairs of alleles

with the association of alleles to chromosomes unknown):

— estimate the underlying haplotypes
— restore the association of alleles to chromosomes (the haplotype phase

This is a mixture modeling problem
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Haplotype Modeling with the CRP Prior (cont.)

e [he genotype is a mixture over the population haplotypes:

plg)= > p(h)p(h2)l(hy @ hy = g),
hi,ho€H

where 1(h; @& hy = g) is the indicator function of the event that haplotypes
h1 and hs are consistent with g.

e The number and identity of the haplotypes is unknown

— use the CRP prior

e Performance on the data of Gabriel, et al (2002):

CRP PHASE
region | length | err, err; dg errs err; d,
16a 13 0.185 | 0.480 | 0.141 | 0.174 | 0.440 | 0.130
1b 16 0.100 | 0.250 | 0.160 | 0.200 | 0.450 | 0.180
25a 14 0.135 | 0.353 | 0.115 | 0.212 | 0.588 | 0.212
7b 13 0.105 | 0.278 | 0.066 | 0.145 | 0.444 | 0.092
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Latent Dirichlet Allocation (LDA) Model
(Blei, Jordan, & Ng 2003)

4,
OO

o 0 Z w N

e Random variables:

— A word is represented as a multinomial random variable w
— A topic is represented as a multinomial random variable z
— A document is represented as a Dirichlet random variable 6

e Plates:

— repeated sampling of Dirichlet document variable within corpus
— repeated sampling of multinomial topic variable within documents
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Issues

e Can we extend to a hierarchical topic model?

e How to choose the hierarchy?
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Nested Chinese Restaurants
(Blei, Griffiths, Jordan, & Tenenbaum, 2004)

Let there be an infinite number of infinite-table Chinese restaurants in a city

One restaurant is determined to be the root restaurant and on each of its
infinite tables is a card with the name of another

On each of the tables in those restaurants are cards that refer to other
restaurants, and this structure repeats infinitely

Thus, the restaurants in the city are organized into an infinitely-branched
tree
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The Hierarchical Topic Model

.o
@ >?q J
Ry

o] | Q
(@) (b)

e (a) A sample path of the nested Chinese restaurant process

e (b) The hierarchical latent Dirichlet allocation model
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The Nested Chinese Restaurant Process

e A tourist arrives in the city for a culinary vacation

— on the first evening, he enters the root Chinese restaurant and selects a
table using Eq. (3)

— on the second evening, he goes to the restaurant identified on the first
night's table and chooses another table, again using Eq. (3)

— repeat this process for L days

— at the end of the trip, the tourist has sat at L restaurants which constitute
a path from the root to a restaurant at the Lth level in the infinite tree

e After M tourists take L-day vacations, the collection of paths describe a
particular L-level subtree of the infinite tree
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The Hierarchical Topic Model

.o
@ >?q J
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o] | Q
(@) (b)

e (a) A sample path of the nested Chinese restaurant process

e (b) The hierarchical latent Dirichlet allocation model
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Results on the NIPS Abstracts
the, of,
a, to,
and, in,
is, for
neurons, visual, algorithm, learning,
cells, cortex, training, method,
synaptic, motion, we, new,
response, processing problem, on
[\ /
cell, chip, recognition, control, hidden, b,
neuron, analog, speech, ‘| reinforcement, urﬁcx X,
circuit, vlsi, character, learning, layer, e,
cells, synapse, word, policy, input, n,
input, weight, system, state, output, P,
l, digital, classification, actions, unit, any,
figure, CMos, characters, value, X, if,
synapses design phonetic optimal vector training
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Summary

e Graphical models provide a general formalism for the design and analysis of
complex probabilistic systems

e Variational algorithms convert a marginalization problem into an
optimization problem
— a methodology that is complementary to MCMC
— many new ‘relaxations” to be explored

e Much work still to do

— variational inference algorithms for nonparametric models
— hierarchical nonparametric models
— frequentist properties of graphical model algorithms

e For more details, see http://www.cs.berkeley.edu/~jordan
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