HIERARCHICAL DESIGNS FOR PATTERN RECOGNITION

DONALD GEMAN

Dept. of Applied Mathematics and Statistics, and Center for Imaging Science, Johns Hopkins University

• **Proposal:** Make computational efficiency the organizing principle for machine perception.

• Motivation:

- Everyday experience (e.g., playing "20 Questions")
- Small-sample learning
- Machine vision experiments: With Y.Amit, F. Fleuret, X. Fan, F. Jung
- Theoretical Analysis: With G. Blanchard

MYSTERIES OF VISION

Not much is "obvious" in either computer or biological perception:

Reconstruction before recognition?

Segmentation before recognition?

Invariance to what transformations?

Generalization from "small" or "large" learning sets?

Top-down or bottom-up processing?

Mental images: sparse or dense?

COARSE-TO-FINE SCENE ANALYSIS

STRATEGY: Design the computational process itself rather than distributions or decision boundaries. Use standard learning algorithms to build components to specifications. Natural progressions and properties then emerge:

- CTF: From broad scope with low power to narrow scope with high power.
- Graded interpretations: A running commentary, increasing in precision.
- *Focus of attention:* A spatial distribution of processing density of work that is highly data-dependent and (hence) non-uniform.

SMALL-SAMPLE COMPUTATIONAL LEARNING

CLAIM: No advances in computers or statistical learning will overcome the sample-size problem; some organizational framework is needed.

- $\{(x_i, y_i), i = 1, ..., n\}$: Training set for inductive learning
 - $-x_i \in \mathcal{X}$: Measurement or feature vector;
 - $-y_i \in \mathcal{Y}$: True label or explanation of x_i .

• Examples:

- $-\mathcal{X}$: Acoustical speech signals; \mathcal{Y} : transcription into words
- $-\mathcal{X}$: Natural images; \mathcal{Y} : semantic description
- $-\mathcal{X}$: Microarray expression data; \mathcal{Y} : class labels
- Common property: $\frac{n}{|\mathcal{X}| \vee |\mathcal{Y}|} \approx 0$

GRADED INTERPRETATIONS

Example: Recognizing License Plates:

- 1. Focus on the plate ("selective attention")
- 2. Apply pre-stored tests for main characters against "background"
- 3. Devise tests, online, to resolve confusions
- 4. Enforce prior knowledge via global optimization

Example: Analyzing the Hippocampus:

- 1. Detect roughly where it is
- 2. Find "landmarks" to initialize intense computation
- 3. Estimate a dense, 3D, template-to-data map, thereby providing a rich geometric and statistical description

FORMULATION

- \bullet \mathcal{Y} : A large number of special explanations for data.
- 0: A dominating "background" explanation or class.
- $\mathbf{Y} \in \{0\} \cup \mathcal{Y}$: The true explanation.

Tasks:

- Classification: Determine Y;
- Figure/Ground Separation: Determine if $\mathbf{Y} = 0$;
- Invariant Detection: Determine a (random) set $\widehat{Y} \subset \mathcal{Y}$ such that $|\widehat{Y}| \ll |\mathcal{Y}|$ and $P(\mathbf{Y} \in \{0\} \cup \widehat{Y}) \approx 1$

FORMULATION (cont)

Basic Assumption: There are natural groupings $A \subset \mathcal{Y}$, such as similar shapes and "writer", which represent partial explanations.

Hypothesis Testing: Given $A, B \subset \{0\} \cup \mathcal{Y}$, test

$$\mathbf{Y} \in A \ vs. \ \mathbf{Y} \in B.$$

Let $X_{AB} \in \{0,1\}$ denote the data-driven decision.

- Noncontextual: $B = A^c$ (nonspecific alternative). Write X_A .
- Power: $\beta(X_A) \doteq P(X_A = 0 | \mathbf{Y} \notin A)$. Write $X_{A,\beta}$.
- Invariance: For every test: $P(X_{A,\beta} = 1 | \mathbf{Y} \in A) \approx 1$.

FORMULATION (cont)

GOAL: Determine \hat{Y} based on exploring a *hierarchy*

$$\mathcal{X} = \{X_{A,\beta}, A \in \mathcal{A}, \beta \in [0,1]\}.$$

in a sequential and adaptive manner.

• **Detections** \widehat{Y} : Explanations not ruled out by any performed test $X_{A,\beta}$:

$$\widehat{Y} = \mathcal{Y} \setminus \bigcup \{A_i, i = 1, ..., K : X_{A_i, \beta_i} = 0\}$$

- Hierarchical Structure:
 - Levels of resolution: $\mathcal{A} = \bigcup_{l=1}^{L} \mathcal{A}_l$ (disjoint)
 - $-\{A_l\}$: Nested partitions of \mathcal{Y} .

MACHINE VISION EXPERIMENTS

EXAMPLE 1: Detect frontal views of highly visible faces in a greyscale image.

- Face Presentation: Characterized by geometric pose alone:
 - Position u: Midpoint between the eyes;
 - Scale σ : Distance in pixels between the eyes, assuming $\sigma \geq 10$;
 - Tilt ϕ : Obvious angle.
- Reference Cell: Let W be a 16×16 reference window of pixels. \mathcal{Y} : A fine partition of $W \times [10, 20] \times [-20^{\circ}, 20^{\circ}]$.
- Pose Decomposition: Recursively partition \mathcal{Y} . Results in a tree-structured hierarchy of pose cells $\mathcal{A} = \{A_{lk}, k = 1, ..., n_l, l = 1, 2, ..., L\}$.

- Test Construction: Build test X_A for each $A \in \mathcal{A}$ from training data.
- Scene Parsing:
 - Parallel component: Visit non-overlapping 16×16 windows and determine \widehat{Y} for surrounding data; downsample, repeat ...
 - Serial component: Explore \mathcal{A} breadth-first CTF.

EXAMPLE 2: Detect rectangles amidst clutter. \mathcal{Y} : Similar to face detection. (Joint with F. Jung.)

PROBLEM 3: Read the symbols (letters and numerals) on license plates based on close-range photographs of cars. (Joint with Y. Amit.)

- Symbol Presentation: $\mathcal{Y} = \{class, font, pose\}.$
- Class/Font/Pose Decomposition: Recursively partition as before....

COMPUTATION

Strategy: Adaptive (tree-structured) testing procedure:

- $\bullet t \in T^o \longrightarrow X_{A_t,\beta_t}$
- $t \in \partial T \longrightarrow \widehat{Y}(t)$, the surviving explanations after testing.

Cost of Testing: The sum of the costs before reaching a decision:

$$C_{test}(T) = \sum_{t \in \partial T} I_{H_t} \sum_{s \downarrow t} c(X_{A_s, \beta_s})$$

where H_t is the event node t is reached. Hence

$$EC_{test}(T) = \sum_{s \in T^o} c(X_{A_s, \beta_s}) P(H_s) = \sum_{A, \beta} c(X_{A, \beta}) q_{A, \beta}(T)$$

where $q_{A,\beta}(T)$ is the probability of performing test $X_{A,\beta}$ in T.

Total Computation:
$$E\left[C_{test}(T) + c^*|\widehat{Y}(T)|\right]$$
.

OPTIMIZATION

Under what assumptions are the (sequential testing) strategies which minimize total computation CTF, meaning:

- $(|A|\downarrow)$: A monotonic decrease in scope.
- $(\beta \uparrow)$: A monotonic increase in power.

Two Fundamental Assumptions:

- Background domination: Take $P = P_0 = P(.|\mathbf{Y} = 0)$ for measuring power and mean computation.
- Conditional independence: $\{X_{A_1,\beta_1},...,X_{A_k,\beta_k}\}$ are independent under P_0 whenever $A_1,...,A_k \in \mathcal{A}$ distinct.

FIXED POWERS

$$\mathcal{X} = \{X_A, A \in \mathcal{A}\}, \ c(A) = cost, \ \beta(A) = power$$

THEOREM: (G. Blanchard/DG) CTF is optimal if

$$\forall A \in \mathcal{A}, \ \frac{c(A)}{\beta(A)} \le \sum_{B \in \mathcal{C}(A)} \frac{c(B)}{\beta(B)}$$

where $\mathcal{C}(A) = direct \ children \ of \ A \ in \ \mathcal{A}$. In particular, $(|A| \downarrow)$ and $(\beta \uparrow)$.

- Each terminal $A \in \mathcal{A}$ has a virtual child with a perfect test of cost c^* .
- For a depth two hierarchy $(\{A_1, B_1, B_2\})$, a n.a.s.c. is

$$\frac{c(A_1)}{\beta(A_1)} \le \min\left(\frac{c(B_1)}{\beta(B_1)\beta(B_2)} + \frac{c(B_2)}{\beta(B_2)}, \frac{c(B_1)}{\beta(B_1)} + \frac{c(B_2)}{\beta(B_1)\beta(B_2)}\right).$$

FIXED POWERS (cont)

Realistic cost model:

$$c(A, \beta) = \Gamma(|A|) \times \Psi(\beta)$$

where Γ is subadditive $(\Gamma(1) = 1)$ and Ψ is convex, increasing $(\Psi(0) = 0)$.

COROLLARY: If power increases with depth and $c(A, \beta)$ is as above, then CTF is optimal.

Remark: $P_0(\widehat{Y}(T) \neq \emptyset)$ (false positive error) is the nonextinction probability for a non-homogeneous Branching process.

IDEA OF THE PROOF

- Let (CF) be the following property:

 For any subhierarchy, any optimal strategy does X_{A_1} first.
- Then (CF) follows from the "magic formula":

$$E_0C(T) = \sum_{Z \in \mathcal{Z}} P_0(\mathcal{X}_0(T) = Z) \sum_{A \in Z} \frac{c(A)}{\beta(A)}.$$

where \mathbb{Z} is the set of *coverings* of the (extended) hierarchy and $\mathcal{X}_0(T)$ is the set of tested A's with $X_A = 0$.

• Develop a recursion based on the "projection" of a strategy.

Surprising Equivalence: Paying c(A) for every test performed is the same, on average, as paying $\frac{c(A)}{\beta(A)}$ for every null answer and nothing otherwise.

VARIABLE POWERS

Suppose: $\mathcal{X} = \{X_{A,\beta}, A \in \mathcal{A}, \beta \in [0,1]\}$ and

- $c(X_{A,\beta}) = |A|\Psi(\beta)$ for $\Psi \uparrow$, $\Psi(0) = 0$, $\Psi(1) = 1$ and Ψ convex.
- $A_s \neq A_t$ for s, t along the same branch of T;

THEOREM: (G. Blanchard/DG)

- i) In the CTF strategy, power depends only on scope and $(\beta \downarrow)$;
- ii) CTF is optimal for $\Psi(x) = 2 2\sqrt{1-x} x$.

CONJECTURES: (Simulation-Based)

- i) CTF is optimal among Ψ convex under mild additional assumptions.
- ii) CTF is optimal for (first-order) Markov hierarchies.

VARIABLE POWERS (cont)

Key Tool: Legendre transform: $\Psi^*(x) = \sup_{\beta \in [0,1]} (x\beta - \Psi(\beta))$.

Example: $(2 - 2\sqrt{1 - x} - x)^* = (1 + x)^{-1}$.

Cost of the CTF Strategy Let C_d denote the average cost of a complete dyadic hierarchy of depth d. Then

$$C_{d+1} = 2C_d - 2^d \Psi^*(\frac{2C_d}{2^d}), \quad d = 1, 2, \dots$$

and

$$\frac{C_d}{2^d} \searrow \Psi'(0), \ d \to \infty.$$

In addition, $\beta_d^* \searrow 0$ where β_d^* is the optimal power for the coarsest test.

Interpretation: First do tests which are highly invariant, but have low power (and hence are cheap).

FINAL COMMENTS

- Thinking about computation at the start of the day appears useful.
- Further practical validation would entail:
 - Extension to fully deformable objects, e.g., CTF detection of a cat.
 - Accommodating a gigantic number of explanations.
 - Facing the "feedback" dilemma: Is "compositionality" really necessary?
- Open mathematical questions include:
 - Demonstrating that the context-based division is optimally efficient.
 - Incorporating dependency, e.g., a Markov hierarchy.
 - Proving that the optimal distribution of total error (FP + FN) puts FN=0.