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e Proposal: Make computational efficiency the organizing principle for

machine perception.

e Motivation:
— Everyday experience (e.g., playing “20 Questions”)
— Small-sample learning

— Machine vision experiments: With Y.Amit, F. Fleuret, X. Fan, F. Jung

e Theoretical Analysis: With G. Blanchard



MYSTERIES OF VISION

Not much s “obvious” in either computer or biological perception:

Reconstruction before recognition?
Segmentation before recognition?
Invariance to what transformations?
Generalization from “small” or “large” learning sets?
Top-down or bottom-up processing?

Mental images: sparse or dense?



COARSE-TO-FINE SCENE ANALYSIS

STRATEGY: Design the computational process itself rather than dis-
tributions or decision boundaries. Use standard learning algorithms to

build components to specifications. Natural progressions and properties

then emerge:

e ('TF': From broad scope with low power to narrow scope with high power.
e Graded interpretations: A running commentary, increasing in precision.

e [ocus of attention: A spatial distribution of processing - density of work -

that is highly data-dependent and (hence) non-uniform.



SMALL-SAMPLE COMPUTATIONAL LEARNING

CLAIM: No advances in computers or statistical learning will overcome

the sample-size problem; some organizational framework is needed.
o {(x;,v:),1=1,...,n}: Training set for inductive learning
— x; € X: Measurement or feature vector;
—1; € Y: True label or explanation of x;.

e Examples:

— X' Acoustical speech signals; ): transcription into words
— AX’: Natural images; )): semantic description

— AX': Microarray expression data; Y: class labels

~ (

e Common property: IXIHW



GRADED INTERPRETATIONS
Example: Recognizing License Plates:
1. Focus on the plate (“selective attention”)
2. Apply pre-stored tests for main characters against “background”
3. Deuvise tests, online, to resolve confusions
4. Enforce prior knowledge via global optimization

Example: Analyzing the Hippocampus:

1. Detect roughly where it 1s
2. Find “landmarks” to initialize intense computation

3. Estimate a dense, 3D, template-to-data map, thereby providing a rich

geometric and statistical description



FORMULATION

e V: A large number of special explanations for data.
e 0: A dominating “background” explanation or class.

oY € {0} UY: The true explanation.

Tasks:
e Classification: Determine Y
o Figure/Ground Separation: Determine if Y = 0;

e [nvariant Detection: Determine a (random) set Y C Y such that |}/>| < Y
and P(Y € {0} UY) ~ 1



FORMULATION (cont)

Basic Assumption: There are natural groupings A C Y, such as similar

shapes and “writer”, which represent partial explanations.
Hypothesis Testing: Given A, B C {0} U )Y, test
YcAwvs. YeEB.

Let X4p € {0, 1} denote the data-driven decision.

e Noncontextual: B = A° (nonspecific alternative). Write X 4.
e Power: B(XA) = P(XA = O|Y ¢ A) Write XAjﬂ.

e Invariance: For every test: P(X43=1Y € A) =~ 1.



FORMULATION (cont)
GOAL: Determine Y based on exploring a hierarchy

X ={Xu5AcApel01]}.
in a sequential and adaptive manner.

e Detections Y: Explanations not ruled out by any performed test X 4 g:

Y=Y\ J{4ii=1,..,K: X4z =0}

e Hierarchical Structure:

— Levels of resolution: A =J;_, A (disjoint)

— {A;}: Nested partitions of ).



MACHINE VISION EXPERIMENTS

EXAMPLE 1: Detect frontal views of highly visible faces in a greyscale

Image.
e Face Presentation: Characterized by geometric pose alone:

— Position v : Midpoint between the eyes;
— Scale ¢ Distance in pixels between the eyes, assuming ¢ > 10;

— Tilt ¢ : Obvious angle.

e Reference Cell: Let IV be a 16 x 16 reference window of pixels. V: A
fine partition of W x [10,20] x [—20°, 20°].

e Pose Decomposition: Recursively partition ). Results in a tree-structured

hierarchy of pose cells A = { A, k=1,...,n,0=1,2,..., L}.



e Test Construction: Build test X 4 for each A € A from training data.
e Scene Parsing:

— Parallel component: Visit non-overlapping 16 x 16 windows and

determine Y for surrounding data; downsample, repeat ...

— Serial component: Explore A breadth-first CTF.

EXAMPLE 2: Detect rectangles amidst clutter. ): Similar to face detec-
tion. (Joint with F. Jung.)

PROBLEM 3: Read the symbols (letters and numerals) on license plates
based on close-range photographs of cars. (Joint with Y. Amit.)

e Symbol Presentation: Y = {class, font, pose}.

e Class/Font /Pose Decomposition: Recursively partition as before....



COMPUTATION

Strategy: Adaptive (tree-structured) testing procedure:
otc]’ — XAtﬁt

ol cil — }/}(t), the surviving explanations after testing.

Cost of Testing: The sum of the costs before reaching a decision:

Ctest Z [Ht Z ¢ XAS 53

tedT st
where H, 1s the event node ¢ is reached. Hence

ECtest Z C XAS,BS s) — Z C<XA,B)QA,5(T)

se’T° AnB
where g4 5(7T) is the probability of performing test X4 5 in 7T'.

Total Computation: F [C’test(T) + c*DA/(T)q



OPTIMIZATION

Under what assumptions are the (sequential testing) strategies which min-

imize total computation CTF, meaning:
e (|A| 1): A monotonic decrease in scope.

e (4 71): A monotonic increase in power.

Two Fundamental Assumptions:

¢ Background domination: Take P = Py = P(.|Y = 0) for measuring

power and mean computation.

e Conditional independence: {X4, 3,,..., X4, 3.} are independent un-

der Py whenever Ay, ..., A, € A distinct.



FIXED POWERS
X ={X4,Aec A}, c(A) = cost, B(A)= power

THEOREM: (G. Blanchard/DG) CTF is optz'mal if

<3

BeC(A
where C(A) = direct children of A in A. In particular, (|A| ]) and (38 7).

e Each terminal A € A has a virtual child with a perfect test of cost c*.

e For a depth two hierarchy ({A1, By, Bo}), a n.as.c. is

C(A1> ) C(Bl) C(B2) C(Bl) C(BQ)
BA) =™ (5(305(3@ T BBy BBy 5(305(&)) '




FIXED POWERS (cont)

Realistic cost model:
c(A, ) = T(|A]) x ¥(5)
where I" is subadditive (I'(1) = 1) and W is convex, increasing (V(0) = 0).

COROLLARY: If power increases with depth and c(A, 3) is as above,
then C'TF is optimal.

AN

Remark: Py(Y(T') # () (false positive error) is the nonextinction probability

for a non-homogeneous Branching process.



IDEA OF THE PROOF

o Let (C'F) be the following property:

For any subhierarchy, any optimal strategy does X 4, first.

e Then (C'F) follows from the “magic formula”:

T) =) Py(X(T) Zﬁﬁ

YA AeZ

where Z is the set of coverings of the (extended) hierarchy and Xy(7T) is
the set of tested A’s with X4 = 0.

e Develop a recursion based on the “projection” of a strategy.

Surprising Equivalence: Payz'ng c(A) for every test performed is the
same, on average, as paying ﬂ for every null answer and nothing other-

wise.



VARIABLE POWERS

Suppose: X = {X,43, A€ A 5 €[0,1]} and
o c(Xap) =|AlY(B) for U1, U(0)=0,¥(1)=1and ¥V convex.

o A, # A, for s,t along the same branch of T

THEOREM: (G. Blanchard/DG)

i) In the CTF strategy, power depends only on scope and (8 1);
i) CTF is optimal for V(z) =2 —2v/1 —x — .

CONJECTURES: (Simulation-Based)
i) CTF is optimal among V convex under mild additional assumptions.

1) CTF is optimal for (first-order) Markov hierarchies.



VARIABLE POWERS (cont)
Key Tool: Legendre transform: U*(x) = supgejo (28 — ¥(05)).

Example: (2—2v1—z—2)* = (1+2)™!

Cost of the CTF Strategy Let Cy; denote the average cost of a complete

dyadic hierarchy of depth d. Then

20

Cd_|_1 — QCd - 2d\IJ ( 2d

), d=1,2,...

and

C
J\@(%d%m.

In addition, B (0 where 3] is the optimal power for the coarsest test.
Interpretation: First do tests which are highly invariant, but have low

power (and hence are cheap).



FINAL COMMENTS

o Thinking about computation at the start of the day appears useful.
e Further practical validation would entail:

— Extension to fully deformable objects, e.g., CTF detection of a cat.
— Accommodating a gigantic number of explanations.

— Facing the “feedback” dilemma: Is “compositionality” really necessary?
e Open mathematical questions include:

— Demonstrating that the context-based division is optimally efficient.
— Incorporating dependency, e.g., a Markov hierarchy:.

— Proving that the optimal distribution of total error (FP + FN) puts
FN=0.



