<< Chapter < Page Chapter >> Page >

Sample preparation

Although different DLS instruments may have different analysis ranges, we are usually looking at particles with a size range of nm to μm in solution. For several kinds of samples, DLS can give results with rather high confidence, such as monodisperse suspensions of unaggregated nanoparticles that have radius>20 nm, or polydisperse nanoparticle solutions or stable solutions of aggregated nanoparticles that have radius in the 100 - 300 nm range with a polydispersity index of 0.3 or below. For other more challenging samples such as solutions containing large aggregates, bimodal solutions, very dilute samples, very small nanoparticles, heterogeneous samples, or unknown samples, the results given by DLS could not be really reliable, and one must be aware of the strengths and weaknesses of this analytical technique.

Then, for the sample preparation procedure, one important question is how much materials should be submit, or what is the optimal concentration of the solution. Generally, when doing the DLS measurement, it is important to submit enough amount of material in order to obtain sufficient signal, but if the sample is overly concentrated, then light scattered by one particle might be again scattered by another (known as multiple scattering), and make the data processing less accurate. An ideal sample submission for DLS analysis has a volume of 1 – 2 mL and is sufficiently concentrated as to have strong color hues, or opaqueness/turbidity in the case of a white or black sample. Alternatively, 100 - 200 μL of highly concentrated sample can be diluted to 1 mL or analyzed in a low-volume microcuvette.

In order to get high quality DLS data, there are also other issues to be concerned with. First is to minimize particulate contaminants, as it is common for a single particle contaminant to scatter a million times more than a suspended nanoparticle, by using ultra high purity water or solvents, extensively rinsing pipettes and containers, and sealing sample tightly. Second is to filter the sample through a 0.2 or 0.45 μm filter to get away of the visible particulates within the sample solution. Third is to avoid probe sonication to prevent the particulates ejected from the sonication tip, and use the bath sonication in stead.

Measurement

Now that the sample is readily prepared and put into the sample holder of the instrument, the next step is to actually do the DLS measurement. Generally the DLS instrument will be provided with software that can help you to do the measurement rather easily, but it is still worthwhile to understand the important parameters used during the measurement.

Firstly, the laser light source with an appropriate wavelength should be selected. As for the Zetasizer Nano series (Malvern Instruments Ltd.), either a 633 nm “red” laser or a 532 nm “green” laser is available. One should keep in mind that the 633 nm laser is least suitable for blue samples, while the 532 nm laser is least suitable for red samples, since otherwise the sample will just absorb a large portion of the incident light.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask