<< Chapter < Page Chapter >> Page >

Nuclear magnetic resonance

NMR can be considered as a “new” characterization technique as far as SWNTs are concerned. Solution state NMR is limited for SWNT characterization because low solubility and slow tumbling of the SWNTs results in broad spectra. Despite this issue, there are still solution 1 H NMR reported of SWNTs functionalized by carbenes, nitrenes and azomethine ylides because of the high solubility of derivatized SWNTs. However, proof of covalent functionalization cannot be obtained from the 1 H NMR. As an alternative, solid state 13 C NMR has been employed to characterize several functionalized SWNTs and show successful observation of sidewall organic functional groups, such as carboxylic and alkyl groups. But there has been a lack of direct evidence of sp 3 carbons on the sidewall of SWNTs that provides information of covalent functionalization.

Solid state 13 C NMR has been successfully employed in the characterization of F-SWNTs through the direct observation of the sp 3 C -F carbons on sidewall of SWNTs. This methodology has been transferred to more complicated systems; however, it has been found that longer side chain length increases the ease to observe sp 3 C -X sidewall carbons.

Solid state NMR is a potentially powerful technique for characterizing functionalized SWNTs because molecular dynamic information can also be obtained. Observation that higher side chain mobility can be achieved by using a longer side chain length offers a method of exploring functional group conformation. In fact, there have been reports using solid state NMR to study molecular mobility of functionalized multi-walled carbon nanotubes.

Microscopy

AFM, TEM and STM are useful imaging techniques to characterize functionalized SWNTs. As techniques, they are routinely used to provide an “image” of an individual nanoparticle, as opposed to an average of all the particles.

Atomic force microscopy

AFM shows morphology on the surface of SWNTs. The height profile on AFM is often used to show presence of functional groups on sidewall of SWNTs. Individual SWNTs can be probed by AFM and sometimes provide information of dispersion and exfoliation of bundles. Measurement of heights along an individual SWNT can be correlated with the substituent group, i.e., the larger an alkyl chain of a sidewall substituent the greater the height measured. AFM does not distinguish whether those functional groups are covalently attached or physically adsorbed on the surface of SWNTs.

Transmission electron microscopy

TEM can be used to directly image SWNTs and at high resolution clearly shows the sidewall of individual SWNT. However, the resolution of TEM is not sufficient to directly observe covalent attachment of chemical modification moieties, i.e., to differentiate between sp 2 and sp 3 carbon atoms. TEM can be used to provide information of functionalization effect on dispersion and exfoliation of ropes.

Samples are usually prepared from very dilute concentration of SWNTs. Sample needs to be very homogeneous to get reliable data. As with AFM, TEM only shows a very small portion of sample, using them to characterize functionalized SWNTs and evaluate dispersion of samples in solvents needs to be done with caution.

Scanning tunneling microscopy

STM offers a lot of insight on structure and surface of functionalized SWNTs. STM measures electronic structure, while sometimes the topographical information can be indirectly inferred by STM images. STM has been used to characterize F-SWNTs gold-marked SWNTs, and organic functionalized SWNTs. Distribution of functional groups can be inferred from STM images since the location of a substituent alters the localized electronic structure of the tube. STM images the position/location of chemical changes to the SWNT structure. The band-like structure of F-SWNTs was first disclosed by STM.

STM has the same problem that is inherent with AFM and TEM, that when using small sample size, the result may not be statistically relevant. Also, chemical identity of the features on SWNTs cannot be determined by STM; rather, they have to be identified by spectroscopic methods such as IR or NMR. A difficulty with STM imaging is that the sample has to be conductive, thus deposition of the SWNT onto a gold (or similar) surface is necessary.

Bibliography

  • L. B. Alemany, L. Zhang, L. Zeng, C. L. Edwards, and A. R. Barron, Chem. Mater ., 2007, 19 , 735.
  • J. L. Bahr and J. M. Tour, J. Mater. Chem ., 2002, 12 , 1952.
  • M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, J. Phys. Chem. C , 2007, 111 , 17887.
  • A. Hirsch, Angew. Chem. Int. Ed ., 2002, 41 , 1853.
  • M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch, J. Am. Chem. Soc ., 2003, 125 , 8566.
  • K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, and N. J. Halas, Chem. Phys. Lett ., 1999, 313 , 455.
  • V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Acc. Chem. Res ., 2002, 35 , 1087.
  • F. Liang, L. B. Alemany, J. M. Beach, and W. E. Billups, J. Am. Chem. Soc ., 2005, 127 , 13941.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev ., 2006, 106 , 1105.
  • H-L. Wu, Y-T. Yang, C-C. M. Ma, and H-C. Kuan, J. Polym. Sci. A. Polym. Chem ., 2005, 6084.
  • L. Zeng, L. Zhang, and A. R. Barron, Nano Lett ., 2005, 5 , 2001.
  • L. Zhang, J. Zhang, N. Schmandt, J. Cratty, V. N. Khabashesku, K. F. Kelly, and A. R. Barron, Chem. Commun ., 2005, 5429.

Questions & Answers

Give and explain different ways to improve the stabilization and prevent agglomeration of nanoparticles (AuNPs for example) in solution (water for example) ?
Abdolaziz Reply
Give and explain different ways to improve the stabilization and prevent agglomeration of nanoparticles (AuNPs for example) in solution (water for example) ? Consider the following: 1- Which kind of solvents you will use? Can you replace/change the solvents? 2- What will happen if you add the f
Abdolaziz
iron man suit
Sudais
who was the first nanotechnologist
Lizzy Reply
k
Veysel
technologist's thinker father is Richard Feynman but the literature first user scientist Nario Tagunichi.
Veysel
Norio Taniguchi
puvananathan
Interesting
Andr
I need help
Richard
@Richard Is that Richard Feynman
Vince
How can someone build up something with the help of nanotechnoloy
Troghty
anyone have book of Abdel Salam Hamdy Makhlouf book in pdf Fundamentals of Nanoparticles: Classifications, Synthesis
Naeem Reply
what happen with The nano material on The deep space.?
pedro Reply
It could change the whole space science.
puvananathan
the characteristics of nano materials can be studied by solving which equation?
sibaram Reply
plz answer fast
sibaram
synthesis of nano materials by chemical reaction taking place in aqueous solvents under high temperature and pressure is call?
sibaram
hydrothermal synthesis
ISHFAQ
how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask