<< Chapter < Page | Chapter >> Page > |
Types of Symbiotic Relationships | ||
---|---|---|
Type | Population A | Population B |
Mutualism | Benefitted | Benefitted |
Amensalism | Harmed | Unaffected |
Commensalism | Benefitted | Unaffected |
Neutralism | Unaffected | Unaffected |
Parasitism | Benefitted | Harmed |
When two species benefit from each other, the symbiosis is called mutualism (or syntropy, or crossfeeding). For example, humans have a mutualistic relationship with the bacterium Bacteroides thetaiotetraiotamicron , which lives in the intestinal tract. B. thetaiotetraiotamicron digests complex polysaccharide plant materials that human digestive enzymes cannot break down, converting them into monosaccharides that can be absorbed by human cells. Humans also have a mutualistic relationship with certain strains of Escherichia coli , another bacterium found in the gut. E. coli relies on intestinal contents for nutrients, and humans derive certain vitamins from E. coli, particularly vitamin K, which is required for the formation of blood clotting factors. (This is only true for some strains of E. coli , however. Other strains are pathogenic and do not have a mutualistic relationship with humans.)
A type of symbiosis in which one population harms another but remains unaffected itself is called amensalism . In the case of bacteria, some amensalist species produce bactericidal substances that kill other species of bacteria. For example, the bacterium Lucilia sericata produces a protein that destroys Staphylococcus aureus , a bacterium commonly found on the surface of the human skin. Too much handwashing can affect this relationship and lead to S. aureus diseases and transmission.
In another type of symbiosis, called commensalism , one organism benefits while the other is unaffected. This occurs when the bacterium Staphylococcus epidermidis uses the dead cells of the human skin as nutrients. Billions of these bacteria live on our skin, but in most cases (especially when our immune system is healthy), we do not react to them in any way.
If neither of the symbiotic organisms is affected in any way, we call this type of symbiosis neutralism . An example of neutralism is the coexistence of metabolically active (vegetating) bacteria and endospores (dormant, metabolically passive bacteria). For example, the bacterium Bacillus anthracis typically forms endospores in soil when conditions are unfavorable. If the soil is warmed and enriched with nutrients, some endospores germinate and remain in symbiosis with other endospores that have not germinated.
A type of symbiosis in which one organism benefits while harming the other is called parasitism . The relationship between humans and many pathogenic prokaryotes can be characterized as parasitic because these organisms invade the body, producing toxic substances or infectious diseases that cause harm. Diseases such as tetanus, diphtheria, pertussis, tuberculosis, and leprosy all arise from interactions between bacteria and humans.
Scientists have coined the term microbiome to refer to all prokaryotic and eukaryotic microorganisms that are associated with a certain organism. Within the human microbiome , there are resident microbiota and transient microbiota . The resident microbiota consists of microorganisms that constantly live in or on our bodies. The term transient microbiota refers to microorganisms that are only temporarily found in the human body, and these may include pathogenic microorganisms. Hygiene and diet can alter both the resident and transient microbiota.
Notification Switch
Would you like to follow the 'Microbiology' conversation and receive update notifications?