<< Chapter < Page Chapter >> Page >

Learning objectives

  • Identify and describe unique examples of prokaryotes in various habitats on earth
  • Identify and describe symbiotic relationships
  • Compare normal/commensal/resident microbiota to transient microbiota
  • Explain how prokaryotes are classified

Part 1

Marsha, a 20-year-old university student, recently returned to the United States from a trip to Nigeria, where she had interned as a medical assistant for an organization working to improve access to laboratory services for tuberculosis testing. When she returned, Marsha began to feel fatigue, which she initially attributed to jet lag. However, the fatigue persisted, and Marsha soon began to experience other bothersome symptoms, such as occasional coughing, night sweats, loss of appetite, and a low-grade fever of 37.4 °C (99.3 °F).

Marsha expected her symptoms would subside in a few days, but instead, they gradually became more severe. About two weeks after returning home, she coughed up some sputum and noticed that it contained blood and small whitish clumps resembling cottage cheese. Her fever spiked to 38.2 °C (100.8 °F), and she began feeling sharp pains in her chest when breathing deeply. Concerned that she seemed to be getting worse, Marsha scheduled an appointment with her physician.

  • Could Marsha’s symptoms be related to her overseas travel, even several weeks after returning home?

Jump to the next Clinical Focus box.

All living organisms are classified into three domains of life: Archaea , Bacteria , and Eukarya . In this chapter, we will focus on the domains Archaea and Bacteria. Archaea and bacteria are unicellular prokaryotic organisms. Unlike eukaryotes, they have no nuclei or any other membrane-bound organelles.

Prokaryote habitats and functions

Prokaryotes are ubiquitous. They can be found everywhere on our planet, even in hot springs, in the Antarctic ice shield, and under extreme pressure two miles under water. One bacterium, Paracoccus denitrificans , has even been shown to survive when scientists removed it from its native environment (soil) and used a centrifuge to subject it to forces of gravity as strong as those found on the surface of Jupiter.

Prokaryotes also are abundant on and within the human body. According to a report by National Institutes of Health, prokaryotes , especially bacteria, outnumber human cells 10:1. Medical Press. “Mouth Bacteria Can Change Their Diet, Supercomputers Reveal.” August 12, 2014. http://medicalxpress.com/news/2014-08-mouth-bacteria-diet-supercomputers-reveal.html. Accessed February 24, 2015. More recent studies suggest the ratio could be closer to 1:1, but even that ratio means that there are a great number of bacteria within the human body. A. Abbott. “Scientists Bust Myth That Our Bodies Have More Bacteria Than Human Cells: Decades-Old Assumption about Microbiota Revisited.” Nature. http://www.nature.com/news/scientists-bust-myth-that-our-bodies-have-more-bacteria-than-human-cells-1.19136. Accessed June 3, 2016. Bacteria thrive in the human mouth, nasal cavity, throat, ears, gastrointestinal tract, and vagina. Large colonies of bacteria can be found on healthy human skin, especially in moist areas (armpits, navel, and areas behind ears). However, even drier areas of the skin are not free from bacteria.

Practice MCQ 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask