<< Chapter < Page Chapter >> Page >
Diagram of plague transmission. The sylvantic rodent-flea cycle is when rodents (such as squirrels and chipmunks) and fleas transmit the pathogen to each other. Fleas and rodents can also transmit the pathogen to birds, which can carry the pathogen long distances. Fleas can also transmit to cows, which can then transmit to humans. Fleas can also transmit to rodents,  which are involved in long-distance transport if the travel on a boat. The urban rodent-flea cycle is when urban rodents (such as mice) and fleas transmit the pathogen to each other. Fleas can infect humans. Pneumonic transmission in humans is when one human transmits to another via the airborne route. Humans can carry the pathogen long distances when they travel. The squirrels and chipmunks in the sylvatic cycle can also transmit to humans; or they can transmit to cats which can then transmit to humans.
Yersinia pestis , the causative agent of plague, has numerous modes of transmission. The modes are divided into two ecological classes: urban and sylvatic (i.e., forest or rural). The urban cycle primarily involves transmission from infected urban mammals (rats) to humans by flea vectors (brown arrows). The disease may travel between urban centers (purple arrow) if infected rats find their way onto ships or trains. The sylvatic cycle involves mammals more common in nonurban environments. Sylvatic birds and mammals (including humans) may become infected after eating infected mammals (pink arrows) or by flea vectors. Pneumonic transmission occurs between humans or between humans and infected animals through the inhalation of Y. pestis in aerosols. (credit “diagram”: modification of work by Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, and Rahalison L; credit “cat”: modification of work by “KaCey97078”/Flickr)
part a shows the upper leg of a person with a large red bump near the groin. Part b is a photo of blackened toes.
(a) Yersinia pestis infection can cause inflamed and swollen lymph nodes (buboes), like these in the groin of an infected patient. (b) Septicemic plague caused necrotic toes in this patient. Vascular damage at the extremities causes ischemia and tissue death. (credit a: modification of work by American Society for Microbiology; credit b: modification of work by Centers for Disease Control and Prevention)

The high mortality rate for the plague is, in part, a consequence of it being unusually well equipped with virulence factors. To date, there are at least 15 different major virulence factors that have been identified from Y. pestis and, of these, eight are involved with adherence to host cells. In addition, the F1 component of the Y. pestis capsule is a virulence factor that allows the bacterium to avoid phagocytosis. F1 is produced in large quantities during mammalian infection and is the most immunogenic component. MOH Key Laboratory of Systems Biology of Pathogens. “Virulence Factors of Pathogenic Bacteria, Yersinia .” http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Yersinia. Accessed September 9, 2016. Successful use of virulence factors allows the bacilli to disseminate from the area of the bite to regional lymph nodes and eventually the entire blood and lymphatic systems.

Culturing and direct microscopic examination of a sample of fluid from a bubo, blood, or sputum is the best way to identify Y. pestis and confirm a presumptive diagnosis of plague. Specimens may be stained using either a Gram, Giemsa, Wright, or Wayson's staining technique ( [link] ). The bacteria show a characteristic bipolar staining pattern, resembling safety pins, that facilitates presumptive identification. Direct fluorescent antibody tests (rapid test of outer-membrane antigens) and serological tests like ELISA can be used to confirm the diagnosis. The confirmatory method for identifying Y. pestis isolates in the US is bacteriophage lysis.

Prompt antibiotic therapy can resolve most cases of bubonic plague, but septicemic and pneumonic plague are more difficult to treat because of their shorter incubation stages. Survival often depends on an early and accurate diagnosis and an appropriate choice of antibiotic therapy. In the US, the most common antibiotics used to treat patients with plague are gentamicin , fluoroquinolones , streptomycin , levofloxacin , ciprofloxacin , and doxycycline .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask