<< Chapter < Page Chapter >> Page >

Learning objectives

  • Identify and define the characteristics of electromagnetic radiation (EMR) used in microscopy
  • Explain how lenses are used in microscopy to manipulate visible and ultraviolet (UV) light

Part 1

Cindy, a 17-year-old counselor at a summer sports camp, scraped her knee playing basketball 2 weeks ago. At the time, she thought it was only a minor abrasion that would heal, like many others before it. Instead, the wound began to look like an insect bite and has continued to become increasingly painful and swollen.

The camp nurse examines the lesion and observes a large amount of pus oozing from the surface. Concerned that Cindy may have developed a potentially aggressive infection, she swabs the wound to collect a sample from the infection site. Then she cleans out the pus and dresses the wound, instructing Cindy to keep the area clean and to come back the next day. When Cindy leaves, the nurse sends the sample to the closest medical lab to be analyzed under a microscope.

  • What are some things we can learn about these bacteria by looking at them under a microscope?

Jump to the next Clinical Focus box.

Visible light consists of electromagnetic waves that behave like other waves. Hence, many of the properties of light that are relevant to microscopy can be understood in terms of light’s behavior as a wave. An important property of light waves is the wavelength , or the distance between one peak of a wave and the next peak. The height of each peak (or depth of each trough) is called the amplitude . In contrast, the frequency of the wave is the rate of vibration of the wave, or the number of wavelengths within a specified time period ( [link] ).

Figure a shows a wavy line with evenly repeating waves upwards and downwards. A straight line through the center of the wavy line indicates the base of the waves. The distance from the peak of one wave to another is the wavelength. The distance from the baseline to the peak of a wave or the distance from the baseline to the trough of a wave is called the amplitude. Figure b shows three waves with unit time labeled across the bottom. The top line has waves that are widely spread apart. Waves with a wide wavelength have a low frequency. The bottom line has waves that are close together. Waves with a narrow wavelength have a high frequency. The middle line has a medium wavelength and therefore a medium frequency.
(a) The amplitude is the height of a wave, whereas the wavelength is the distance between one peak and the next. (b) These waves have different frequencies, or rates of vibration. The wave at the top has the lowest frequency, since it has the fewest peaks per unit time. The wave at the bottom has the highest frequency.

Interactions of light

Light waves interact with materials by being reflected, absorbed, or transmitted. Reflection occurs when a wave bounces off of a material. For example, a red piece of cloth may reflect red light to our eyes while absorbing other colors of light. Absorbance occurs when a material captures the energy of a light wave. In the case of glow-in-the-dark plastics, the energy from light can be absorbed and then later re-emitted as another form of phosphorescence. Transmission occurs when a wave travels through a material, like light through glass (the process of transmission is called transmittance ). When a material allows a large proportion of light to be transmitted, it may do so because it is thinner, or more transparent (having more transparency and less opacity ). [link] illustrates the difference between transparency and opacity.

Figure a shows the tips of a person’s gloved hands holding a clear plate with a lid. The plate contains a reddish material in the bottom of the plate. Figure b shows a piece of metal in a person’s hands. The material is dark with some shiny regions.
(a) A Petri dish is made of transparent plastic or glass, which allows transmission of a high proportion of light. This transparency allows us to see through the sides of the dish to view the contents. (b) This slice of an iron meteorite is opaque (i.e., it has opacity). Light is not transmitted through the material, making it impossible to see the part of the hand covered by the object. (credit a: modification of work by Umberto Salvagnin; credit b: modification of work by “Waifer X”/Flickr)

Questions & Answers

What is a cell
Odelana Reply
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask