<< Chapter < Page Chapter >> Page >

The type of protocol required to achieve the desired level of cleanliness depends on the particular item to be cleaned. For example, those used clinically are categorized as critical, semicritical, and noncritical. Critical items must be sterile because they will be used inside the body, often penetrating sterile tissues or the bloodstream; examples of critical item s include surgical instruments, catheters , and intravenous fluids. Gastrointestinal endoscope s and various types of equipment for respiratory therapies are examples of semicritical item s; they may contact mucous membranes or nonintact skin but do not penetrate tissues. Semicritical items do not typically need to be sterilized but do require a high level of disinfection. Items that may contact but not penetrate intact skin are noncritical item s; examples are bed linens, furniture, crutches, stethoscopes, and blood pressure cuffs. These articles need to be clean but not highly disinfected.

The act of handwashing is an example of degerming , in which microbial numbers are significantly reduced by gently scrubbing living tissue, most commonly skin, with a mild chemical (e.g., soap) to avoid the transmission of pathogenic microbes. Wiping the skin with an alcohol swab at an injection site is another example of degerming. These degerming methods remove most (but not all) microbes from the skin’s surface.

The term sanitization refers to the cleansing of fomites to remove enough microbes to achieve levels deemed safe for public health. For example, commercial dishwashers used in the food service industry typically use very hot water and air for washing and drying; the high temperatures kill most microbes, sanitizing the dishes. Surfaces in hospital rooms are commonly sanitized using a chemical disinfectant to prevent disease transmission between patients. [link] summarizes common protocols, definitions, applications, and agents used to control microbial growth.

A table titled: Common protocols for control of microbial growth. Four columns: protocol, definition, common application and common agents. The table is divided by protocols used for fomites and those used on living tissue. Protocols for fomites include disinfection, sanitation, and sterilization. Disinfection reduces or destroys microbial load of an inanimate item through application of heat or antimicrobial chemicals. Disinfection involves cleaning surfaces like laboratory benches, clinical surfaces, and bathrooms and uses Chlorine bleach, phenols (e.g., Lysol), glutaraldehyde. Sanitization reduces microbial load of an inanimate item to safe public health levels through application of heat or antimicrobial chemicals. Sanitation involves Commercial dishwashing of eating utensils, cleaning public restrooms and uses Detergents containing phosphates (e.g., Finish), industrial-strength cleaners containing quaternary ammonium compounds. Sterilization Completely eliminates all vegetative cells, endospores, and viruses from an inanimate item. Sterilization involves Preparation of surgical equipment and of needles used for injection and uses Pressurized steam (autoclave), chemicals, radiation.  Protocols for living tissue include antisepsis and degerming. Antisepsis Reduces microbial load on skin or tissue through application of an antimicrobial chemical. Antisepsis involves Cleaning skin broken due to injury; cleaning skin before surgery and uses Boric acid, isopropyl alcohol, hydrogen peroxide, iodine (betadine). Degerming Reduces microbial load on skin or tissue through gentle to firm scrubbing and the use of mild chemicals. Degerming involves Handwashing and uses Soap, alcohol swab.
  • What is the difference between a disinfectant and an antiseptic?
  • Which is most effective at removing microbes from a product: sanitization, degerming, or sterilization? Explain.

Part 2

Roberta’s physician suspected that a bacterial infection was responsible for her sudden-onset high fever, abdominal pain, and bloody urine. Based on these symptoms, the physician diagnosed a urinary tract infection (UTI). A wide variety of bacteria may cause UTIs, which typically occur when bacteria from the lower gastrointestinal tract are introduced to the urinary tract. However, Roberta’s recent gallstone surgery caused the physician to suspect that she had contracted a nosocomial (hospital-acquired) infection during her surgery. The physician took a urine sample and ordered a urine culture to check for the presence of white blood cells, red blood cells, and bacteria. The results of this test would help determine the cause of the infection. The physician also prescribed a course of the antibiotic ciprofloxacin, confident that it would clear Roberta’s infection.

  • What are some possible ways that bacteria could have been introduced to Roberta’s urinary tract during her surgery?

Jump to the next Clinical Focus box. Go back to the previous Clinical Focus box.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask