<< Chapter < Page Chapter >> Page >

In 1902, Theodor Boveri (1862–1915) observed that in sea urchins, nuclear components (chromosomes) determined proper embryonic development. That same year, Walter Sutton (1877–1916) observed the separation of chromosomes into daughter cells during meiosis. Together, these observations led to the development of the Chromosomal Theory of Inheritance , which identified chromosomes as the genetic material responsible for Mendelian inheritance.

Despite compelling correlations between the behavior of chromosomes during meiosis and Mendel’s observations, the Chromosomal Theory of Inheritance was proposed long before there was any direct evidence that traits were carried on chromosomes. Thomas Hunt Morgan (1866–1945) and his colleagues spent several years carrying out crosses with the fruit fly, Drosophila melanogaster . They performed meticulous microscopic observations of fly chromosomes and correlated these observations with resulting fly characteristics. Their work provided the first experimental evidence to support the Chromosomal Theory of Inheritance in the early 1900s. In 1915, Morgan and his “Fly Room” colleagues published The Mechanism of Mendelian Heredity, which identified chromosomes as the cellular structures responsible for heredity. For his many significant contributions to genetics, Morgan received the Nobel Prize in Physiology or Medicine in 1933.

In the late 1920s, Barbara McClintock (1902–1992) developed chromosomal staining techniques to visualize and differentiate between the different chromosomes of maize (corn). In the 1940s and 1950s, she identified a breakage event on chromosome 9, which she named the dissociation locus ( Ds ). Ds could change position within the chromosome. She also identified an activator locus ( Ac ). Ds chromosome breakage could be activated by an Ac element (transposase enzyme). At first, McClintock’s finding of these jumping genes , which we now call transposons , was not accepted by the scientific community. It wasn’t until the 1960s and later that transposons were discovered in bacteriophages, bacteria, and Drosophila . Today, we know that transposons are mobile segments of DNA that can move within the genome of an organism. They can regulate gene expression, protein expression, and virulence (ability to cause disease).

Microbes and viruses in genetic research

Microbiologists have also played a crucial part in our understanding of genetics. Experimental organisms such as Mendel ’s garden peas, Morgan’s fruit flies, and McClintock ’s corn had already been used successfully to pave the way for an understanding of genetics. However, microbes and viruses were (and still are) excellent model systems for the study of genetics because, unlike peas, fruit flies, and corn, they are propagated more easily in the laboratory, growing to high population densities in a small amount of space and in a short time. In addition, because of their structural simplicity, microbes and viruses are more readily manipulated genetically.

Fortunately, despite significant differences in size, structure, reproduction strategies, and other biological characteristics, there is biochemical unity among all organisms; they have in common the same underlying molecules responsible for heredity and the use of genetic material to give cells their varying characteristics. In the words of French scientist Jacques Monod , “What is true for E. coli is also true for the elephant,” meaning that the biochemistry of life has been maintained throughout evolution and is shared in all forms of life, from simple unicellular organisms to large, complex organisms. This biochemical continuity makes microbes excellent models to use for genetic studies.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask