<< Chapter < Page Chapter >> Page >

Learning objectives

  • List the various types of microorganisms and describe their defining characteristics
  • Give examples of different types of cellular and viral microorganisms and infectious agents
  • Describe the similarities and differences between archaea and bacteria
  • Provide an overview of the field of microbiology

Most microbes are unicellular and small enough that they require artificial magnification to be seen. However, there are some unicellular microbes that are visible to the naked eye, and some multicellular organisms that are microscopic. An object must measure about 100 micrometers (µm) to be visible without a microscope, but most microorganisms are many times smaller than that. For some perspective, consider that a typical animal cell measures roughly 10 µm across but is still microscopic. Bacterial cells are typically about 1 µm, and viruses can be 10 times smaller than bacteria ( [link] ). See [link] for units of length used in microbiology.

A bar along the bottom indicates size of various objects. At the far right is a from egg at approximately 1 mm. To the left are a human egg and a pollen grain at approximately 0.1 mm. Next are a standard plant and animal cell which range from 10 – 100 µm. Next is a red blood cell at just under 10 µm. Next are a mitochondrion and bacterial cell at approximately 1 µm. Next is a smallpox virus at approximately 500 nm. Next is a flu virus at approximately 100 nm. Next is a polio virus at approximately 50 nm. Next are proteins which range from 5-10 nm. Next are lipids which range from 2-5 nm. Next is C60 (fullerene molecule) which is approximately 1 nm. Finally, atoms are approximately 0.1 nm. Light microscopes can be used to view items larger than 100 nm (the size of a flu virus). Electron microscopes are useful for materials from 1.5 nm (larger than an atom) to 1 µm (the size of many bacteria).
The relative sizes of various microscopic and nonmicroscopic objects. Note that a typical virus measures about 100 nm, 10 times smaller than a typical bacterium (~1 µm), which is at least 10 times smaller than a typical plant or animal cell (~10–100 µm). An object must measure about 100 µm to be visible without a microscope.
Units of Length Commonly Used in Microbiology
Metric Unit Meaning of Prefix Metric Equivalent
meter (m) 1 m = 10 0 m
decimeter (dm) 1/10 1 dm = 0.1 m = 10 −1 m
centimeter (cm) 1/100 1 cm = 0.01 m = 10 −2 m
millimeter (mm) 1/1000 1 mm = 0.001 m = 10 −3 m
micrometer (μm) 1/1,000,000 1 μm = 0.000001 m = 10 −6 m
nanometer (nm) 1/1,000,000,000 1 nm = 0.000000001 m = 10 −9 m

Microorganisms differ from each other not only in size, but also in structure, habitat, metabolism, and many other characteristics. While we typically think of microorganisms as being unicellular, there are also many multicellular organisms that are too small to be seen without a microscope. Some microbes, such as viruses, are even acellular (not composed of cells).

Microorganisms are found in each of the three domains of life: Archaea, Bacteria, and Eukarya. Microbes within the domains Bacteria and Archaea are all prokaryotes (their cells lack a nucleus), whereas microbes in the domain Eukarya are eukaryotes (their cells have a nucleus). Some microorganisms, such as viruses, do not fall within any of the three domains of life. In this section, we will briefly introduce each of the broad groups of microbes. Later chapters will go into greater depth about the diverse species within each group.

Prokaryotic microorganisms

Bacteria are found in nearly every habitat on earth, including within and on humans. Most bacteria are harmless or helpful, but some are pathogen s , causing disease in humans and other animals. Bacteria are prokaryotic because their genetic material (DNA) is not housed within a true nucleus. Most bacteria have cell walls that contain peptidoglycan.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask