<< Chapter < Page Chapter >> Page >

The primary structure of a protein is easily obtainable from its corresponding gene sequence, as well as by experimental manipulation. Unfortunately, the primary structure is only indirectly related to the protein's function. In order to work properly, a protein must fold to form a specific three-dimensional shape, called its native structure or native conformation . The three-dimensional structure of a protein is usually understood in a hierarchical manner. Secondary structure refers to folding in a small part of the protein that forms a characteristic shape. The most common secondary structure elements are α-helices and β-sheets , one or both of which are present in almost all natural proteins.

Secondary structure: α-helix

α-helices, rendered three different ways. Left is a typical cartoon rendering, in which the helix is depicted as a cylinder. Center shows a trace of the backbone of the protein. Right shows a space-filling model of the helix, and is the only rendering that shows all atoms (including those on side chains).

Secondary structure: β-sheet

Cartoon representation

Different parts of the polypeptide strand align with each other to form a β-sheet. This β-sheet is anti-parallel , because adjacent segments of the protein run in opposite directions.

Ribbon representation

β-sheets are sometimes referred to as β pleated sheets, because of the regular zig-zag of the strands evident in this representation.

Bond representation

Each segment in this representation represents a bond. Unlike the other two representations, side chains are illustrated. Note the alignment of oxygen atoms (red) toward nitrogen atoms (blue) on adjacent strands. This alignment is due to hydrogen bonding, the primary interaction involved in stabilizing secondary structure.
Beta-sheets represented in three different rendering modes: cartoon, ribbon, and bond representations.
Tertiary structure refers to structural elements formed by bringing more distant parts of a chain together into structural domains . The spatial arrangement of these domains with respect to each other is also considered part of the tertiary structure. Finally, many proteins consist of more than one polypeptide folded together, and the spatial relationship between these separate polypeptide chains is called the quaternary structure . It is important to note that the native conformation of a protein is a direct consequence of its primary sequence and its chemical environment, which for most proteins is either aqueous solution with a biological pH (roughly neutral) or the oily interior of a cell membrane. Nevertheless, no reliable computational method exists to predict the native structure from the amino acid sequence, and this is a topic of ongoing research. Thus, in order to find the native structure of a protein, experimental techniques are deployed. The most common approaches are outlined in the next section.

Experimental methods for protein structure determination

A structure of a protein is a three-dimensional arrangement of the atoms such that the integrity of the molecule (its connectivity) is maintained. The goal of a protein structure determination experiment is to find a set of three-dimensional (x, y, z) coordinates for each atom of the molecule in some natural state. Of particular interest is the native structure, that is, the structure assumed by the protein under its biological conditions, as well as structures assumed by the protein when in the process of interacting with other molecules. Brief sketches of the major structure determination methods follow:

X-ray crystallography

The most commonly used and usually highest-resolution method of structure determination is x-ray crystallography . To obtain structures by this method, laboratory biochemists obtain a very pure, crystalline sample of a protein. X-rays are then passed through the sample, in which they are diffracted by the electrons of each atom of the protein. The diffraction pattern is recorded, and can be used to reconstruct the three-dimensional pattern of electron density, and therefore, within some error, the location of each atom. A high-resolution crystal structure has a resolution on the order of 1 to 2 Angstroms (Å). One Angstrom is the diameter of a hydrogen atom (10^-10 meter, or one hundred-millionth of a centimeter).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Geometric methods in structural computational biology. OpenStax CNX. Jun 11, 2007 Download for free at http://cnx.org/content/col10344/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Geometric methods in structural computational biology' conversation and receive update notifications?

Ask