<< Chapter < Page Chapter >> Page >
Describes Laplace transforms.

Introduction

The Laplace transform is a generalization of the Continuous-Time Fourier Transform . It is used because the CTFT does not converge/exist for many important signals, and yet it does for the Laplace-transform (e.g., signals with infinite l 2 norm). It is also used because it is notationally cleaner than the CTFT. However, instead of using complex exponentials of the form ω t , with purely imaginary parameters, the Laplace transform uses the more general, s t , where s σ ω is complex, to analyze signals in terms of exponentially weighted sinusoids.

The laplace transform

Bilateral laplace transform pair

Although Laplace transforms are rarely solved in practice using integration ( tables and computers ( e.g. Matlab) are much more common), we will provide the bilateral Laplace transform pair here for purposes of discussion and derivation. These define the forward and inverse Laplace transformations. Notice the similarities between the forwardand inverse transforms. This will give rise to many of the same symmetries found in Fourier analysis .

Laplace transform

F s t f t s t

Inverse laplace transform

f t 1 2 s c c F s s t

We have defined the bilateral Laplace transform. There is also a unilateral Laplace transform ,
F s t 0 f t s t
which is useful for solving the difference equations with nonzero initial conditions. This is similar to the unilateral Z Transform in Discrete time.

Relation between laplace and ctft

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Continuous-time fourier transform

Ω t f t Ω t

Laplace transform

F s t f t s t
We can see many similarities; first, that :
Ω F s
for all Ω s

the CTFT is a complex-valued function of a real-valued variable ω (and 2 periodic). The Z-transform is a complex-valued function of a complex valued variable z.

Plots

Visualizing the laplace transform

With the Fourier transform, we had a complex-valued function of a purely imaginary variable , F ω . This was something we could envision with two 2-dimensional plots (real and imaginary parts or magnitude andphase). However, with Laplace, we have a complex-valued function of a complex variable . In order to examine the magnitude and phase or real andimaginary parts of this function, we must examine 3-dimensional surface plots of each component.

Real and imaginary sample plots

The Real part of H s
The Imaginary part of H s
Real and imaginary parts of H s are now each 3-dimensional surfaces.

Magnitude and phase sample plots

The Magnitude of H s
The Phase of H s
Magnitude and phase of H s are also each 3-dimensional surfaces. This representation is more common than real and imaginary parts.

While these are legitimate ways of looking at a signal in the Laplace domain, it is quite difficult to draw and/or analyze.For this reason, a simpler method has been developed. Although it will not be discussed in detail here, the methodof Poles and Zeros is much easier to understand and is the way both the Laplace transform and its discrete-time counterpart the Z-transform are represented graphically.

Using a computer to find the laplace transform

Using a computer to find Laplace transforms is relatively painless. Matlab has two functions, laplace and ilaplace , that are both part of the symbolic toolbox, and will find the Laplace and inverseLaplace transforms respectively. This method is generally preferred for more complicated functions. Simpler and morecontrived functions are usually found easily enough by using tables .

Laplace transform definition demonstration

LaplaceTransformDemo
Interact (when online) with a Mathematica CDF demonstrating the Laplace Transform. To Download, right-click and save target as .cdf.

Interactive demonstrations

Khan lecture on laplace

See the attached video on the basics of the Unilateral Laplace Transform from Khan Academy

Conclusion

The laplace transform proves a useful, more general form of the Continuous Time Fourier Transform. It applies equally well to describing systems as well as signals using the eigenfunction method, and to describing a larger class of signals better described using the pole-zero method.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask