<< Chapter < Page Chapter >> Page >
E n = 1 2 m e v 2 k Zq e 2 r n . size 12{E rSub { size 8{n} } = { {1} over {2} } m rSub { size 8{e} } v rSup { size 8{2} } - k { { ital "Zq" rSub { size 8{e} } rSup { size 8{2} } } over {r rSub { size 8{n} } } } } {}

Now we substitute r n size 12{r rSub { size 8{n} } } {} and v size 12{v} {} from earlier equations into the above expression for energy. Algebraic manipulation yields

E n = Z 2 n 2 E 0 ( n = 1, 2, 3, ... ) size 12{E rSub { size 8{n} } = - { {Z rSup { size 8{2} } } over {n rSup { size 8{2} } } } E rSub { size 8{0} } \( n=1," 2, 3, " "." "." "." \) } {}

for the orbital energies of hydrogen-like atoms    . Here, E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy n = 1 size 12{ left (n=1 right )} {} for hydrogen Z = 1 size 12{ left (Z=1 right )} {} and is given by

E 0 = 2 π 2 q e 4 m e k 2 h 2 = 13.6 eV.

Thus, for hydrogen,

E n = 13.6 eV n 2 ( n = 1, 2, 3, ...).

[link] shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are related to transitions between energy levels.

An energy level diagram is shown. At the left, there is a vertical arrow showing the energy levels increasing from bottom to top. At the bottom, there is a horizontal line showing the energy levels of Lyman series, n is one. The energy is marked as negative thirteen point six electron volt. Then, in the upper half of the figure, another horizontal line showing Balmer series is shown when the value of n is two. The energy level is labeled as negative three point four zero electron volt. Above it there is another horizontal line showing Paschen series. The energy level is marked as negative one point five one electron volt. Above this line, some more lines are shown in a small area to show energy levels of other values of n.
Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough kinetic energy to escape. As n size 12{n} {} approaches infinity, the total energy becomes zero. This corresponds to a free electron with no kinetic energy, since r n size 12{r rSub { size 8{n} } } {} gets very large for large n size 12{n} {} , and the electric potential energy thus becomes zero. Thus, 13.6 eV is needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the electron becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Δ E = hf = E i E f . size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}

Substituting E n = ( 13.6 eV / n 2 ) size 12{E rSub { size 8{n} } = - "13" "." 6``"eV"/n rSup { size 8{2} } } {} , we see that

hf = 13.6 eV 1 n f 2 1 n i 2 . size 12{ ital "hf"= left ("13" "." 6" eV" right ) left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

Dividing both sides of this equation by hc size 12{ ital "hc"} {} gives an expression for 1 / λ size 12{1/λ} {} :

hf hc = f c = 1 λ = 13.6 eV hc 1 n f 2 1 n i 2 . size 12{ { { ital "hf"} over { ital "hc"} } = { {f} over {c} } = { {1} over {λ} } = { { left ("13" "." 6" eV" right )} over { ital "hc"} } left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

It can be shown that

13.6 eV hc = 13.6 eV 1.602 × 10 −19 J/eV 6.626 × 10 −34 J·s 2.998 × 10 8 m/s = 1.097 × 10 7 m –1 = R

is the Rydberg constant    . Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier as a recipe to fit experimental data.

1 λ = R 1 n f 2 1 n i 2 size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the hydrogen spectrum. It is because the energy levels are proportional to 1 / n 2 size 12{1/n rSup { size 8{2} } } {} , where n size 12{n} {} is a non-negative integer. A downward transition releases energy, and so n i size 12{n rSub { size 8{i} } } {} must be greater than n f size 12{n rSub { size 8{f} } } {} . The various series are those where the transitions end on a certain level. For the Lyman series, n f = 1 size 12{n rSub { size 8{f} } =1} {} — that is, all the transitions end in the ground state (see also [link] ). For the Balmer series, n f = 2 size 12{n rSub { size 8{f} } =2} {} , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in physics, and something new is emerging—angular momentum is quantized.

Triumphs and limits of the bohr theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all atoms and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically (accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the nucleus—matter would collapse). These are major triumphs.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask