<< Chapter < Page Chapter >> Page >

Front Panel of CTFT and Its Properties: Combination of Input Signals Tab

Varying pulse width

Keep the default values of Time shift (=0) and Time scaling (=1) and vary the Pulse width of the rectangular pulse. First, set the value of the Pulse width to its minimum value (=0.01) and then increase it. Observe that increasing the Pulse width in the time domain decrements the width in the frequency domain (see [link] ). When the Pulse width is set to its maximum value (=1) in the frequency domain, only one value can be seen at the center frequency indicating the signal is of DC type (refer to Properties of CTFT section of Chapter 5).

Magnitude Spectrum for Different Pulse Widths: (a) 0.01, (b) 0.2, (c) 0.5, (d) 1

Time shift

Next, for a fixed pulse width, vary the time shift. Observe that the phase spectrum changes but the magnitude spectrum remains the same. If the signal x ( t ) size 12{x \( t \) } {} is shifted by a constant t 0 size 12{t rSub { size 8{0} } } {} , its FT magnitude does not change, but the term ωt 0 size 12{ - ωt rSub { size 8{0} } } {} gets added to its phase angle. This verifies the time-shifting property of FT as stated in Properties of CTFT section of Chapter 5 (see [link] ).

Magnitude and Phase Spectrum for Different Time Shifts: (a) 0, (b) 0.2, (c) 0.5, (d) 0.7

Time scaling

Observe that increasing the control Time scaling makes the spectrum wider. This indicates that compressing the signal in the time domain leads to expansion in the frequency domain. This verifies the time-scaling property of FT as stated in Properties of CTFT section of Chapter 5 (see [link] ).

Magnitude Spectrum for Different Time Scalings: (a) 1, (b) 2, (c) 3, (d) 4

Linearity

Here, combine two signals to examine the linearity property of FT. Select Linear Combination for the Time domain and Frequency domain combination method. This selection combines two time signals, x 1 ( t ) size 12{x rSub { size 8{1} } \( t \) } {} and x 2 ( t ) size 12{x rSub { size 8{2} } \( t \) } {} , linearly with the scaling factors, a 1 size 12{a rSub { size 8{1} } } {} and a 2 size 12{a rSub { size 8{2} } } {} , producing a new signal, a 1 x 1 ( t ) + a 2 x 2 ( t ) size 12{a rSub { size 8{1} } x rSub { size 8{1} } \( t \) +a rSub { size 8{2} } x rSub { size 8{2} } \( t \) } {} . [link] displays the FT of this linear combination. The linear combination in the frequency domain produces a new signal, a 1 X 1 ( ω ) + a 2 X 2 ( ω ) size 12{a rSub { size 8{1} } X rSub { size 8{1} } \( ω \) +a rSub { size 8{2} } X rSub { size 8{2} } \( ω \) } {} . [link] also displays the inverse FT of this combination. Observe that both combinations produce the same result in the time and frequency domains, as indicated by the linearity property stated in Properties of CTFT section of Chapter 5.

Verifying the Linearity Property of CTFT

Time convolution

In this part, convolve two signals in the time domain to examine the time-convolution property of FT. Select Convolution for Time domain and Multiplication for Frequency domain. This selection produces and displays a new signal, x 1 ( t ) x 2 ( t ) size 12{x rSub { size 8{1} } \( t \) * x rSub { size 8{2} } \( t \) } {} , by convolving the two time signals x 1 ( t ) size 12{x rSub { size 8{1} } \( t \) } {} and x 2 ( t ) size 12{x rSub { size 8{2} } \( t \) } {} . Multiplication in the frequency domain produces a new signal, X 1 ( ω ) X 2 ( ω ) size 12{X rSub { size 8{1} } \( ω \) X rSub { size 8{2} } \( ω \) } {} . The inverse FT of this multiplied signal is also displayed on the right. Note that both combinations produce the same outcome in the time and frequency domains. This verifies the time-convolution property stated in the Properties of CTFT section of Chapter 5 (see [link] ).

Verifying the Time-Convolution Property of CTFT

Frequency convolution

Convolve two signals in the frequency domain to examine the frequency-convolution property of FT. Select Convolution for Frequency domain and Multiplication for Time domain. This selection convolves the two time signals X 1 ( ω ) size 12{X rSub { size 8{1} } \( ω \) } {} and X 2 ( ω ) size 12{X rSub { size 8{2} } \( ω \) } {} to produce a new signal, X 1 ( ω ) X 2 ( ω ) size 12{X rSub { size 8{1} } \( ω \) * X rSub { size 8{2} } \( ω \) } {} . The inverse FT of the convolved signal is displayed. Multiplication in Time domain produces a new signal, x 1 ( t ) x 2 ( t ) size 12{x rSub { size 8{1} } \( t \) x rSub { size 8{2} } \( t \) } {} . The FT of this multiplied signal is also displayed. Note that both combinations produce the same outcome in the time and frequency domains. This verifies the frequency-convolution property stated in the Properties of CTFT section of Chapter 5 (see [link] ).

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask