<< Chapter < Page Chapter >> Page >

Although there can be significant differences in the efficiencies of the various Cooley-Tukey and Split-Radix FFTs, thenumber of multiplications and additions for all of them is on the order of N log N . That is fundamental to the class of algorithms.

The quick fourier transform, an fft based on symmetries

The development of fast algorithms usually consists of using special properties of the algorithm of interest to remove redundant or unnecessary operations of a direct implementation. The discrete Fourier transform(DFT) defined by

C ( k ) = n = 0 N - 1 x ( n ) W N n k

where

W N = e - j 2 π / N

has enormous capacity for improvement of its arithmetic efficiency. Most fast algorithms use the periodic and symmetric properties of its basisfunctions. The classical Cooley-Tukey FFT and prime factor FFT [link] exploit the periodic properties of the cosine and sine functions. Their use of the periodicities to share and, therefore, reduce arithmeticoperations depends on the factorability of the length of the data to be transformed. For highly composite lengths, the number of floating-pointoperation is of order N log ( N ) and for prime lengths it is of order N 2 .

This section will look at an approach using the symmetric properties to remove redundancies. This possibility has long been recognized [link] , [link] , [link] , [link] but has not been developed in any systematic way in the open literature. We will develop an algorithm,called the quick Fourier transform (QFT) [link] , that will reduce the number of floating point operations necessary to compute the DFT by afactor of two to four over direct methods or Goertzel's method for prime lengths. Indeed, it seems the best general algorithm available for primelength DFTs. One can always do better by using Winograd type algorithms but they must be individually designed for each length. The Chirp Z-transform can be used for longer lengths.

Input and output symmetries

We use the fact that the cosine is an even function and the sine is an odd function. The kernel of the DFT or the basis functions of the expansion isgiven by

W N n k = e - j 2 π n k / N = cos ( 2 π n k / N ) + j sin ( 2 π n k / N )

which has an even real part and odd imaginary part. If the data x ( n ) are decomposed into their real and imaginary parts and those into their even andodd parts, we have

x ( n ) = u ( n ) + j v ( n ) = [ u e ( n ) + u o ( n ) ] + j [ v e ( n ) + v o ( n ) ]

where the even part of the real part of x ( n ) is given by

u e ( n ) = ( u ( n ) + u ( - n ) ) / 2

and the odd part of the real part is

u o ( n ) = ( u ( n ) - u ( - n ) ) / 2

with corresponding definitions of v e ( n ) and v o ( n ) . Using Convolution Algorithms: Equation 32 with a simpler notation, the DFT of Convolution Algorithms: Equation 29 becomes

C ( k ) = n = 0 N - 1 ( u + j v ) ( cos - j sin ) .

The sum over an integral number of periods of an odd function is zero and the sum of an even function over half of the period is one half the sumover the whole period. This causes [link] and [link] to become

C ( k ) = n = 0 N / 2 - 1 [ u e cos + v o sin ] + j [ v e cos - v o sin ] .

for k = 0 , 1 , 2 , , N - 1 .

The evaluation of the DFT using equation [link] requires half as many real multiplication and half as many real additions as evaluating it using [link] or [link] . We have exploited the symmetries of the sine and cosine as functions of the time index n . This is independent of whether the length is composite or not. Another view of this formulation is thatwe have used the property of associatively of multiplication and addition. In other words, rather than multiply two data points by the same value ofa sine or cosine then add the results, one should add the data points first then multiply the sum by the sine or cosine which requires onerather than two multiplications.

Questions & Answers

the definition for anatomy and physiology
Watta Reply
what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fast fourier transforms. OpenStax CNX. Nov 18, 2012 Download for free at http://cnx.org/content/col10550/1.22
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fast fourier transforms' conversation and receive update notifications?

Ask