<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Beginning with the graphical solution of systems, this chapter includes an interpretation of independent, inconsistent, and dependent systems and examples to illustrate the applications for these systems. The substitution method and the addition method of solving a system by elimination are explained, noting when to use each method. The five-step method is again used to illustrate the solutions of value and rate problems (coin and mixture problems), using drawings that correspond to the actual situation.Objectives of this module: know the properties used in the addition method, be able to use the addition method to solve a system of linear equations, know what to expect when using the addition method with a system that consists of parallel or coincident lines.

Overview

  • The Properties Used in the Addition Method
  • The Addition Method
  • Addition and Parallel or Coincident Lines

The properties used in the addition method

Another method of solving a system of two linear equations in two variables is called the method of elimination by addition . It is similar to the method of elimination by substitution in that the process eliminates one equation and one variable. The method of elimination by addition makes use of the following two properties.

  1. If A , B , and C are algebraic expressions such that

    A = B C = D A + C = B + D and then
  2. a x + ( a x ) = 0


Property 1 states that if we add the left sides of two equations together and the right sides of the same two equations together, the resulting sums will be equal. We call this adding equations . Property 2 states that the sum of two opposites is zero.

The addition method

To solve a system of two linear equations in two variables by addition,

  1. Write, if necessary, both equations in general form, a x + b y = c .
  2. If necessary, multiply one or both equations by factors that will produce opposite coefficients for one of the variables.
  3. Add the equations to eliminate one equation and one variable.
  4. Solve the equation obtained in step 3.
  5. Do one of the following:
     (a)  Substitute the value obtained in step 4 into either of the original equations and solve to obtain the value of the other variable,
     or
     (b)  Repeat steps 1-5 for the other variable.
  6. Check the solutions in both equations.
  7. Write the solution as an ordered pair.


The addition method works well when the coefficient of one of the variables is 1 or a number other than 1.

Sample set a

Solve  { x y = 2 ( 1 ) 3 x + y = 14 ( 2 )

Step 1:  Both equations appear in the proper form.

Step 2:  The coefficients of y are already opposites, 1 and 1 , so there is no need for a multiplication.

Step 3:  Add the equations.

      x y = 2 3 x + y = 14 4 x + 0 = 16

Step 4:  Solve the equation 4 x = 16.

      4 x = 16

      x = 4

 The problem is not solved yet; we still need the value of y .

Step 5:  Substitute x = 4 into either of the original equations. We will use equation 1.

      4 y = 2 Solve for  y . y = 2 y = 2

 We now have x = 4 , y = 2.

Step 6:  Substitute x = 4 and y = 2 into both the original equations for a check.

       ( 1 ) x y = 2 ( 2 ) 3 x + y = 14 4 2 = 2 Is this correct? 3 ( 4 ) + 2 = 14 Is this correct? 2 = 2 Yes, this is correct . 12 + 2 = 14 Is this correct? 14 = 14 Yes, this is correct .

Step 7:  The solution is ( 4 , 2 ) .

The two lines of this system intersect at ( 4 , 2 ) .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra i for the community college. OpenStax CNX. Dec 19, 2014 Download for free at http://legacy.cnx.org/content/col11598/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra i for the community college' conversation and receive update notifications?

Ask