<< Chapter < Page Chapter >> Page >

The normal and binormal vectors

We have seen that the derivative r ( t ) of a vector-valued function is a tangent vector to the curve defined by r ( t ) , and the unit tangent vector T ( t ) can be calculated by dividing r ( t ) by its magnitude. When studying motion in three dimensions, two other vectors are useful in describing the motion of a particle along a path in space: the principal unit normal vector    and the binormal vector    .

Definition

Let C be a three-dimensional smooth    curve represented by r over an open interval I. If T ( t ) 0 , then the principal unit normal vector at t is defined to be

N ( t ) = T ( t ) T ( t ) .

The binormal vector at t is defined as

B ( t ) = T ( t ) × N ( t ) ,

where T ( t ) is the unit tangent vector.

Note that, by definition, the binormal vector is orthogonal to both the unit tangent vector and the normal vector. Furthermore, B ( t ) is always a unit vector. This can be shown using the formula for the magnitude of a cross product

B ( t ) = T ( t ) × N ( t ) = T ( t ) N ( t ) sin θ ,

where θ is the angle between T ( t ) and N ( t ) . Since N ( t ) is the derivative of a unit vector, property (vii) of the derivative of a vector-valued function tells us that T ( t ) and N ( t ) are orthogonal to each other, so θ = π / 2 . Furthermore, they are both unit vectors, so their magnitude is 1. Therefore, T ( t ) N ( t ) sin θ = ( 1 ) ( 1 ) sin ( π / 2 ) = 1 and B ( t ) is a unit vector.

The principal unit normal vector can be challenging to calculate because the unit tangent vector involves a quotient, and this quotient often has a square root in the denominator. In the three-dimensional case, finding the cross product of the unit tangent vector and the unit normal vector can be even more cumbersome. Fortunately, we have alternative formulas for finding these two vectors, and they are presented in Motion in Space .

Finding the principal unit normal vector and binormal vector

For each of the following vector-valued functions, find the principal unit normal vector. Then, if possible, find the binormal vector.

  1. r ( t ) = 4 cos t i 4 sin t j
  2. r ( t ) = ( 6 t + 2 ) i + 5 t 2 j 8 t k
  1. This function describes a circle.
    This figure is the graph of a circle centered at the origin with radius of 2. The orientation of the circle is clockwise. It represents the vector-valued function r(t) = 4costi – 4 sintj.
    To find the principal unit normal vector, we first must find the unit tangent vector T ( t ) :
    T ( t ) = r ( t ) r ( t ) = −4 sin t i 4 cos t j ( −4 sin t ) 2 + ( −4 cos t ) 2 = −4 sin t i 4 cos t j 16 sin 2 t + 16 cos 2 t = −4 sin t i 4 cos t j 16 ( sin 2 t + cos 2 t ) = −4 sin t i 4 cos t j 4 = sin t i cos t j .

    Next, we use [link] :
    N ( t ) = T ( t ) T ( t ) = cos t i + sin t j ( cos t ) 2 + ( sin t ) 2 = cos t i + sin t j cos 2 t + sin 2 t = cos t i + sin t j .

    Notice that the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of t :
    T ( t ) · N ( t ) = sin t , cos t · cos t , sin t = sin t cos t cos t sin t = 0.

    Furthermore, the principal unit normal vector points toward the center of the circle from every point on the circle. Since r ( t ) defines a curve in two dimensions, we cannot calculate the binormal vector.
    This figure is the graph of a circle centered at the origin with radius of 2. The orientation of the circle is clockwise. It represents the vector-valued function r(t) = 4costi – 4 sintj. On the circle in the first quadrant is a vector pointing inward. It is labeled “principal unit normal vector”.
  2. This function looks like this:
    This figure is a curve in 3 dimensions. It is inside of a box. The box represents the first octant. The curve starts at the bottom right of the box and curves through the box in a parabolic curve to the top.
    To find the principal unit normal vector, we first find the unit tangent vector T ( t ) :
    T ( t ) = r ( t ) r ( t ) = 6 i + 10 t j 8 k 6 2 + ( 10 t ) 2 + ( −8 ) 2 = 6 i + 10 t j 8 k 36 + 100 t 2 + 64 = 6 i + 10 t j 8 k 100 ( t 2 + 1 ) = 3 i 5 t j 4 k 5 t 2 + 1 = 3 5 ( t 2 + 1 ) 1 / 2 i t ( t 2 + 1 ) 1 / 2 j 4 5 ( t 2 + 1 ) 1 / 2 k .

    Next, we calculate T ( t ) and T ( t ) :
    T ( t ) = 3 5 ( 1 2 ) ( t 2 + 1 ) 3 / 2 ( 2 t ) i ( ( t 2 + 1 ) 1 / 2 t ( 1 2 ) ( t 2 + 1 ) 3 / 2 ( 2 t ) ) j 4 5 ( 1 2 ) ( t 2 + 1 ) 3 / 2 ( 2 t ) k = 3 t 5 ( t 2 + 1 ) 3 / 2 i 1 ( t 2 + 1 ) 3 / 2 j + 4 t 5 ( t 2 + 1 ) 3 / 2 k T ( t ) = ( 3 t 5 ( t 2 + 1 ) 3 / 2 ) 2 + ( 1 ( t 2 + 1 ) 3 / 2 ) 2 + ( 4 t 5 ( t 2 + 1 ) 3 / 2 ) 2 = 9 t 2 25 ( t 2 + 1 ) 3 + 1 ( t 2 + 1 ) 3 + 16 t 2 25 ( t 2 + 1 ) 3 = 25 t 2 + 25 25 ( t 2 + 1 ) 3 = 1 ( t 2 + 1 ) 2 = 1 t 2 + 1 .

    Therefore, according to [link] :
    N ( t ) = T ( t ) T ( t ) = ( 3 t 5 ( t 2 + 1 ) 3 / 2 i 1 ( t 2 + 1 ) 3 / 2 j + 4 t 5 ( t 2 + 1 ) 3 / 2 k ) ( t 2 + 1 ) = 3 t 5 ( t 2 + 1 ) 1 / 2 i 5 5 ( t 2 + 1 ) 1 / 2 j + 4 t 5 ( t 2 + 1 ) 1 / 2 k = 3 t i + 5 j 4 t k 5 t 2 + 1 .

    Once again, the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of t :
    T ( t ) · N ( t ) = ( 3 i 5 t j 4 k 5 t 2 + 1 ) · ( 3 t i + 5 j 4 t k 5 t 2 + 1 ) = 3 ( −3 t ) 5 t ( −5 ) 4 ( 4 t ) 5 t 2 + 1 = −9 t + 25 t 16 t 5 t 2 + 1 = 0.

    Last, since r ( t ) represents a three-dimensional curve, we can calculate the binormal vector using [link] :
    B ( t ) = T ( t ) × N ( t ) = | i j k 3 5 t 2 + 1 5 t 5 t 2 + 1 4 5 t 2 + 1 3 t 5 t 2 + 1 5 5 t 2 + 1 4 t 5 t 2 + 1 | = ( ( 5 t 5 t 2 + 1 ) ( 4 t 5 t 2 + 1 ) ( 4 5 t 2 + 1 ) ( 5 5 t 2 + 1 ) ) i ( ( 3 5 t 2 + 1 ) ( 4 t 5 t 2 + 1 ) ( 4 5 t 2 + 1 ) ( 3 t 5 t 2 + 1 ) ) j + ( ( 3 5 t 2 + 1 ) ( 5 5 t 2 + 1 ) ( 5 t 5 t 2 + 1 ) ( 3 t 5 t 2 + 1 ) ) k = ( −20 t 2 20 25 ( t 2 + 1 ) ) i + ( −15 15 t 2 25 ( t 2 + 1 ) ) k = −20 ( t 2 + 1 25 ( t 2 + 1 ) ) i 15 ( t 2 + 1 25 ( t 2 + 1 ) ) k = 4 5 i 3 5 k .
Got questions? Get instant answers now!

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask