<< Chapter < Page | Chapter >> Page > |
The following important conditions are intuitive and may be established rigorously:
Limit theorems for finite state space sequences
The following propositions may be established for Markov sequences with finite state space:
A limit theorem
If the states in a Markov chain are ergodic (i.e., positive, recurrent, aperiodic), then
If, as above, we let
the result above may be written
where
Each row of is the long run distribution .
Definition . A distribution is stationary iff
The result above may be stated by saying that the long-run distribution is the stationary distribution. A generating function analysisshows the convergence is exponential in the following sense
where is the largest absolute value of the eigenvalues for P other than .
We use MATLAB to check the eigenvalues for the transition probability P and to obtain increasing powers of P . The convergence process is readily evident.
P =
0.0803 0.1839 0.3679 0.36790.6321 0.3679 0 0
0.2642 0.3679 0.3679 00.0803 0.1839 0.3679 0.3679
E = abs(eig(P))E =
1.00000.2602
0.26020.0000
format longN = E(2).^[4 8 12]
N = 0.00458242348096 0.00002099860496 0.00000009622450>>P4 = P^4
P4 =0.28958568915950 0.28593792666752 0.26059678211310 0.16387960205989
0.28156644866011 0.28479107531968 0.26746979455342 0.166172681466790.28385952806702 0.28250048636032 0.26288737107246 0.17075261450021
0.28958568915950 0.28593792666752 0.26059678211310 0.16387960205989>>P8 = P^8
P8 =0.28580046500309 0.28471421248816 0.26315895715219 0.16632636535655
0.28577030590344 0.28469190218618 0.26316681807503 0.166370973835350.28581491438224 0.28471028095839 0.26314057837998 0.16633422627939
0.28580046500309 0.28471421248816 0.26315895715219 0.16632636535655>>P12 = P^12
P12 =0.28579560683438 0.28470680858266 0.26315641543927 0.16634116914369
0.28579574073314 0.28470680714781 0.26315628010643 0.166341172012610.28579574360207 0.28470687626748 0.26315634631961 0.16634103381085
0.28579560683438 0.28470680858266 0.26315641543927 0.16634116914369>>error4 = max(max(abs(P^16 - P4))) % Use P^16 for P_0
error4 = 0.00441148012334% Compare with 0.0045824...>>error8 = max(max(abs(P^16 - P8)))
error8 = 2.984007206519035e-05 % Compare with 0.00002099>>error12 = max(max(abs(P^16 - P12)))
error12 = 1.005660185959822e-07 % Compare with 0.00000009622450
Notification Switch
Would you like to follow the 'Applied probability' conversation and receive update notifications?