<< Chapter < Page Chapter >> Page >

The count-min sketch

Define H as the set of all discrete-valued functions h : { 1 , ... , N } { 1 , ... , m } . Note that H is a finite set of size m N . Each function h H can be specified by a binary characteristic matrix φ ( h ) of size m × N , with each column being a binary vector with exactly one 1 at the location j , where j = h ( i ) . To construct the overall sampling matrix Φ , we choose d functions h 1 , ... , h d independently from the uniform distribution defined on H , and vertically concatenate their characteristic matrices. Thus, if M = m d , Φ is a binary matrix of size M × N with each column containing exactly d ones.

Now given any signal x , we acquire linear measurements y = Φ x . It is easy to visualize the measurements via the following two properties. First, the coefficients of the measurement vector y are naturally grouped according to the “mother” binary functions { h 1 , ... , h d } . Second, consider the i t h coefficient of the measurement vector y , which corresponds to the mother binary function h . Then, the expression for y i is simply given by:

y i = j : h ( j ) = i x j .

In other words, for a fixed signal coefficient index j , each measurement y i as expressed above consists of an observation of x j corrupted by other signal coefficients mapped to the same i by the function h . Signal recovery essentially consists of estimating the signal values from these “corrupted" observations.

The count-min algorithm is useful in the special case where the entries of the original signal are positive. Given measurements y using the sampling matrix Φ as constructed above, the estimate of the j th signal entry is given by:

x ^ j = min l y i : h l ( j ) = i .

Intuitively, this means that the estimate of x j is formed by simply looking at all measurements that comprise of x j corrupted by other signal values, and picking the one with the lowest magnitude. Despite the simplicity of this algorithm, it is accompanied by an arguably powerful instance-optimality guarantee: if d = C log N and m = 4 / α K , then with high probability, the recovered signal x ^ satisfies:

x - x ^ α / K · x - x * 1 ,

where x * represents the best K -term approximation of x in the 1 sense.

The count-median sketch

For the general setting when the coefficients of the original signal could be either positive or negative, a similar algorithm known as count-median can be used. Instead of picking the minimum of the measurements, we compute the median of all those measurements that are comprised of a corrupted version of x j and declare it as the signal coefficient estimate, i.e.,

x ^ j = median l y i : h l ( j ) = i .

The recovery guarantees for count-median are similar to that for count-min, with a different value of the failure probability constant. An important feature of both count-min and count-median is that they require that the measurements be perfectly noiseless , in contrast to optimization/greedy algorithms which can tolerate small amounts of measurement noise.

Summary

Although we ultimately wish to recover a sparse signal from a small number of linear measurements in both of these settings, there are some important differences between such settings and the compressive sensing setting studied in this course . First, in these settings it is natural to assume that the designer of the reconstruction algorithm also has full control over Φ , and is thus free to choose Φ in a manner that reduces the amount of computation required to perform recovery. For example, it is often useful to design Φ so that it has few nonzeros, i.e., the sensing matrix itself is also sparse  [link] , [link] , [link] . In general, most methods involve careful construction of the sensing matrix Φ , which is in contrast with the optimization and greedy methods that work with any matrix satisfying a generic condition such as the restricted isometry property . This additional degree of freedom can lead to significantly faster algorithms  [link] , [link] , [link] , [link] .

Second, note that the computational complexity of all the convex methods and greedy algorithms described above is always at least linear in N , since in order to recover x we must at least incur the computational cost of reading out all N entries of x . This may be acceptable in many typical compressive sensing applications, but this becomes impractical when N is extremely large, as in the network monitoring example. In this context, one may seek to develop algorithms whose complexity is linear only in the length of the representation of the signal, i.e., its sparsity K . In this case the algorithm does not return a complete reconstruction of x but instead returns only its K largest elements (and their indices). As surprising as it may seem, such algorithms are indeed possible. See  [link] , [link] for examples.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask