<< Chapter < Page Chapter >> Page >

Rutherford's model of the atom

Radioactive elements emit different types of particles. Some of these are positively charged alpha ( α ) particles. Rutherford carried out a series of experiments where he bombarded sheets of gold foil with these particles, to try to get a better understanding of where the positive charge in the atom was. A simplified diagram of his experiment is shown in [link] .

Rutherford's gold foil experiment. Figure (a) shows the path of the α particles after they hit the gold sheet. Figure (b) shows the arrangement of atoms in the gold sheets and the path of the α particles in relation to this.

Rutherford set up his experiment so that a beam of alpha particles was directed at the gold sheets. Behind the gold sheets was a screen made of zinc sulphide. This screen allowed Rutherford to see where the alpha particles were landing. Rutherford knew that the electrons in the gold atoms would not really affect the path of the alpha particles, because the mass of an electron is so much smaller than that of a proton. He reasoned that the positively charged protons would be the ones to repel the positively charged alpha particles and alter their path.

What he discovered was that most of the alpha particles passed through the foil undisturbed and could be detected on the screen directly behind the foil (A). Some of the particles ended up being slightly deflected onto other parts of the screen (B). But what was even more interesting was that some of the particles were deflected straight back in the direction from where they had come (C)! These were the particles that had been repelled by the positive protons in the gold atoms. If the Plum Pudding model of the atom were true then Rutherford would have expected much more repulsion, since the positive charge according to that model is distributed throughout the atom. But this was not the case. The fact that most particles passed straight through suggested that the positive charge was concentrated in one part of the atom only.

Rutherford's work led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons. Another way of thinking about this model was that the atom was seen to be like a mini solar system where the electrons orbit the nucleus like planets orbiting around the sun. A simplified picture of this is shown in [link] .

Rutherford's model of the atom

The bohr model

There were, however, some problems with this model: for example it could not explain the very interesting observation that atoms only emit light at certain wavelengths or frequencies. Niels Bohr solvedthis problem by proposing that the electrons could only orbit the nucleus in certain special orbits at different energy levels around the nucleus. The exact energies of the orbitals in each energy level depends onthe type of atom. Helium for example, has different energy levels to Carbon. If an electron jumps down from a higher energy level to a lower energy level, then light is emitted fromthe atom. The energy of the light emitted is the same as the gap in the energy between the two energy levels. You can read more about this in "Energy quantisation and electron configuration" . The distance between the nucleus and the electron in the lowest energy level of a hydrogen atom is known as the Bohr radius .

Interesting fact

Light has the properties of both a particle and a wave! Einstein discovered that light comes in energy packets which are called photons . When an electron in an atom changes energy levels, a photon of light is emitted. This photon has the same energy asthe difference between the two electron energy levels.

The size of atoms

It is difficult sometimes to imagine the size of an atom, or its mass, because we cannot see an atom and also because we are not used to working with such small measurements.

How heavy is an atom?

It is possible to determine the mass of a single atom in kilograms. But to do this, you would need very modern mass spectrometers and the values you would get would be very clumsy and difficult to use. The mass of a carbon atom, for example, is about 1.99 x 10 - 26 kg, while the mass of an atom of hydrogen is about 1.67 x 10 - 27 kg. Looking at these very small numbers makes it difficult to compare how much bigger the mass of one atom is when compared to another.

To make the situation simpler, scientists use a different unit of mass when they are describing the mass of an atom. This unit is called the atomic mass unit (amu). We can abbreviate (shorten) this unit to just 'u'. Scientists use the carbon standard to determine amu. The carbon standard assigns carbon an atomic mass of 12 u. Using the carbon standard the mass of an atom of hydrogen will be 1 u. You can check this by dividing the mass of a carbon atom in kilograms (see above) by the mass of a hydrogen atom in kilograms (you will need to use a calculator for this!). If you do this calculation, you will see that the mass of a carbon atom is twelve times greater than the mass of a hydrogen atom. When we use atomic mass units instead of kilograms, it becomes easier to see this. Atomic mass units are therefore not giving us the actual mass of an atom, but rather its mass relative to the mass of one (carefully chosen) atom in the Periodic Table. Although carbon is the usual element to compare other elements to, oxygen and hydrogen have also been used. The important thing to remember here is that the atomic mass unit is relative to one (carefully chosen) element. The atomic masses of some elements are shown in the table below.

The atomic mass number of some of the elements
Element Atomic mass (u)
Carbon (C) 12
Nitrogen (N) 14
Bromine (Br) 80
Magnesium (Mg) 24
Potassium (K) 39
Calcium (Ca) 40
Oxygen (O) 16

The actual value of 1 atomic mass unit is 1.67 x 10 - 24 g or 1.67 x 10 - 27 kg. This is a very tiny mass!

How big is an atom?

pm stands for picometres . 1 pm = 10 - 12 m

Atomic diameter also varies depending on the element. On average, the diameter of an atom ranges from 100 pm (Helium) to 670 pm (Caesium). Using different units, 100 pm = 1 Angstrom, and 1 Angstrom = 10 - 10 m. That is the same as saying that 1 Angstrom = 0,0000000010 m or that 100 pm = 0,0000000010 m! In other words, the diameter of an atom ranges from 0.0000000010 m to 0.0000000067 m. This is very small indeed.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask