<< Chapter < Page Chapter >> Page >

E S ( τ , φ ) S ( τ ' , φ ' ) = R SS ( τ , φ ) δ ( τ τ ' ) δ ( φ φ ' ) size 12{E left lbrace S \(τ,φ\) S \( { {τ}} sup { ' }, { {φ}} sup { ' } \) right rbrace =R rSub { size 8{ ital "SS"} } \(τ,φ\)δ\(τ- { {τ}} sup { ' } \)δ\(φ- { {φ}} sup { ' } \) } {}

R SS ( τ , φ ) size 12{R rSub { size 8{ ital "SS"} } \(τ,φ\) } {} is known as the scattering function of the active sonar scenario. The description of the target, reverberation and clutter statistics are captured in this expression.

Using this definition, we obtain for the power of the matched filter:

E m ( t , φ ) m ( t , φ ) = E T S ( τ , δ ) e j2π ( φ δ ) τ χ ( t τ , φ δ ) dτdδ S ( τ ' , δ ' ) e j2π ( φ δ ' ) τ ' χ ( t τ ' , φ δ ' ) d τ ' d δ ' alignl { stack { size 12{E left lbrace m \( t,φ\) m rSup { size 8{*} } \( t,φ\) right rbrace ={}} {} # E rSub { size 8{T} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S \(τ,δ\) e rSup { size 8{ - j2π\(φ-δ\)τ} }χ\( t -τ,φ-δ\) dτdδ} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {S rSup { size 8{*} } \( { {τ}} sup { ' }, { {δ}} sup { ' } \) e rSup { size 8{j2π\(φ- { {δ}} sup { ' } \) { {τ}} sup { ' }} }χrSup { size 8{*} } \( t - { {τ}} sup { ' },φ- { {δ}} sup { ' } \) d { {τ}} sup { ' }d { {δ}} sup { ' }} } {} } } {}

Which becomes

E m ( t , φ ) 2 = E T R SS ( τ , δ ) χ ( t τ , φ δ ) 2 dτdδ size 12{E left lbrace lline m \( t,φ\) rline rSup { size 8{2} } right rbrace =E rSub { size 8{T} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {R rSub { size 8{ ital "SS"} } \(τ,δ\) llineχ\( t -τ,φ-δ\) rline rSup { size 8{2} } dτdδ} } } {}

Using two dimensional convolution notation **, this expression for the matched filter power P ( t , φ ) size 12{P \( t,φ\) } {} becomes

P ( t , φ ) = E m ( t , φ ) 2 = E T R SS ( t , φ ) ** χ ( t , φ ) 2 size 12{P \( t,φ\) =E left lbrace lline m \( t,φ\) rline rSup { size 8{2} } right rbrace =E rSub { size 8{T} } R rSub { size 8{ ital "SS"} } \( t,φ\) "**" llineχ\( t,φ\) rline rSup { size 8{2} } } {}

Now, let us model the acoustic sonar problem as target, clutter/reverberation and noise. The matched filter power response to ambient noise was shown earlier to be AN 0 size 12{ ital "AN" rSub { size 8{0} } } {} . The overall signal to interference ratio, for a target at range t size 12{t} {} and Doppler φ size 12{φ} {} is

SIR = P Target ( t , φ ) P Reverb/clutter ( t , φ ) + AN 0 size 12{ ital "SIR"= { {P rSub { size 8{"Target"} } \( t,φ\) } over {P rSub { size 8{"Reverb/clutter"} } \( t,φ\) + ital "AN" rSub { size 8{0} } } } } {}

Which becomes,

SIR ( t , φ ) = R SS Target ( t , φ ) ** χ ( t , φ ) 2 R SS Reverb/Clutter ( t , φ ) ** χ ( t , φ ) 2 + AN 0 E T size 12{ ital "SIR" \( t,φ\) = { {R rSub { size 8{ {} rSub { size 6{ ital "SS"} } } } rSup {"Target"} size 12{ \( t,φ\) "**" llineχ\( t,φ\) rline rSup {2} }} over { size 12{R rSub { {} rSub { size 6{ ital "SS"} } } rSup {"Reverb/Clutter"} size 12{ \( t,φ\) "**" llineχ\( t,φ\) rline rSup {2} } size 12{+ { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } } {}

This expression can be simplified for different target and scattering conditions. For a point target at range t 0 size 12{t rSub { size 8{0} } } {} and Doppler φ 0 size 12{φrSub { size 8{0} } } {} , the target scattering function becomes

R SS Target ( t , φ ) = ( t t 0 ) δ ( φ φ 0 ) size 12{R rSub { size 8{ ital "SS"} } rSup { size 8{"Target"} } \( t,φ\) =Sδ\( t - t rSub { size 8{0} } \)δ\(φ-φrSub { size 8{0} } \) } {} .

Often, we can assume that the reverberation scattering function is constant in the vicinity of the target, so that

R SS Reverb/Clutter ( t , φ ) = R t 0 Q Revrb ( φ ) size 12{R rSub { size 8{ ital "SS"} } rSup { size 8{"Reverb/Clutter"} } \( t,φ\) =R rSub { size 8{t rSub { size 6{0} } } } Q rSub {"Revrb"} size 12{ \(φ\) }} {}

Q Revrb ( φ ) size 12{Q rSub { size 8{"Revrb"} } \(φ\) } {} describes the Doppler roll-off of the reverberation. It will be affected by the source, receiver and ocean motion. In this characterization, we are ignoring“discrete clutter”, e.g. target like responses from bottom features.

We will assume that Q Revrb ( φ ) size 12{Q rSub { size 8{"Revrb"} } \(φ\) } {} is normalized, so that:

Q Revrb ( φ ) = 1 size 12{ Int {Q rSub { size 8{"Revrb"} } \(φ\) dφ=1} } {}

With these assumptions we obtain

SIR ( t , φ ) = S Target ( t 0 , φ 0 ) χ ( t t 0 , φ φ 0 ) 2 R t 0 Q Reverb ( φ δ ) χ ( τ , φ ) 2 dτdδ + AN 0 E T size 12{ ital "SIR" \( t,φ\) = { {S rSup {"Target"} size 12{ \( t rSub {0} } size 12{,φrSub {0} } size 12{ \) llineχ\( t - t rSub {0} size 12{,φ-φrSub {0} } size 12{ \) } rline rSup {2} }} over { size 12{R rSub { {} rSub { size 6{t rSub {0} } } } iInt {} size 12{Q rSub {"Reverb"} } size 12{ \(φ-δ\) llineχ\(τ,φ\) rline rSup {2} } size 12{dτdδ+ { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } } {}

Note that when the matched filter is matched in time and Doppler, then t = t 0 size 12{t=t rSub { size 8{0} } } {} and φ = φ 0 size 12{φ=φrSub { size 8{0} } } {} , and the numerator is maximized:

SIR ( t 0 , φ 0 ) = S Target ( t 0 , φ 0 ) R t 0 Q Reverb ( φ 0 δ ) χ ( τ , φ 0 ) 2 dτdδ + AN 0 E T size 12{ ital "SIR" \( t rSub { size 8{0} } ,φrSub { size 8{0} } \) = { {S rSup {"Target"} size 12{ \( t rSub {0} } size 12{,φrSub {0} } size 12{ \) }} over {R rSub { {} rSub { size 6{t rSub {0} } } } iInt {} size 12{Q rSub {"Reverb"} } size 12{ \(φrSub {0} } size 12{ -δ\) llineχ\(τ,φrSub {0} size 12{ \) } rline rSup {2} } size 12{dτdδ+ { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } {}

The denominator can be simplified further by using the definition of the waveform Q function:

Q ( φ ) = χ ( τ , φ ) 2 size 12{Q \(φ\) = Int { llineχ\(τ,φ\) rline } rSup { size 8{2} } dτ} {}

Using this definition, we obtain:

SIR ( t , φ ) = S Target ( t 0 , φ 0 ) χ ( t t 0 , φ φ 0 ) 2 R t 0 Q Reverb ( φ ) Q ( φ ) + AN 0 E T size 12{ ital "SIR" \( t,φ\) = { {S rSup {"Target"} size 12{ \( t rSub {0} } size 12{,φrSub {0} } size 12{ \) llineχ\( t - t rSub {0} size 12{,φ-φrSub {0} } size 12{ \) } rline rSup {2} }} over { size 12{R rSub { {} rSub { size 6{t rSub {0} } } } size 12{Q rSub {"Reverb"} } size 12{ \(φ\) *Q \(φ\) + { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } } {}

When using a waveform with a Q function much wider than the reverberation Q function, (such as an HFM), the waveform Q function can be replaced by a constant, such as Q HFM size 12{Q rSub { size 8{ ital "HFM"} } } {} . The convolution with the reverberation Q function becomes the constant Q HFM size 12{Q rSub { size 8{ ital "HFM"} } } {} (because of the normalization of Q Reverb size 12{Q rSub { size 8{"Reverb"} } } {} ) :

Q Reverb ( φ ) Q ( φ ) = Q HFM Q Reverb ( φ φ ' ) ' = Q HFM size 12{Q rSub { size 8{"Reverb"} } \(φ\) *Q \(φ\) =Q rSub { size 8{ ital "HFM"} } Int {Q rSub { size 8{"Reverb"} } \(φ-φrSup { size 8{'} } \) } dφrSup { size 8{'} } =Q rSub { size 8{ ital "HFM"} } } {}

With this approximation the signal to interference ratio becomes:

SIR HFM ( t , φ ) = S Target ( t 0 , φ 0 ) χ ( t t 0 , φ φ 0 ) 2 R t 0 Q HFM + AN 0 E T size 12{ ital "SIR" rSub { size 8{ ital "HFM"} } \( t,φ\) = { {S rSup {"Target"} size 12{ \( t rSub {0} } size 12{,φrSub {0} } size 12{ \) llineχ\( t - t rSub {0} size 12{,φ-φrSub {0} } size 12{ \) } rline rSup {2} }} over { size 12{R rSub { {} rSub { size 6{t rSub {0} } } } size 12{Q rSub { ital "HFM"} } size 12{+ { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } } {}

When the waveform is Doppler sensitive, and it’s Q function is narrower than the Reverberation Q function, we can approximate the waveform Q function by a rectangle of height T and width 1/T centered at zero Doppler. Than the convolution becomes:

Q Reverb ( φ ) Q ( φ ) = Q Reverb ( φ φ ' ) Q DSW ( φ ' ) ' 1 / 2T 1 / 2T Q Reverb ( φ φ ' ) Td φ ' Q Re verb ( φ ) size 12{Q rSub { size 8{"Reverb"} } \(φ\) *Q \(φ\) = Int {Q rSub { size 8{"Reverb"} } \(φ-φrSup { size 8{'} } \) } Q rSub { size 8{ ital "DSW"} } \(φrSup { size 8{'} } \) dφrSup { size 8{'} } approx Int cSub { size 8{ - 1/2T} } cSup { size 8{1/2T} } {Q rSub { size 8{"Reverb"} } \(φ-φrSup { size 8{'} } \) } ital "Td"φrSup { size 8{'} } approx Q rSub { size 8{"Re" ital "verb"} } \(φ\) } {}

Therefore, the signal to interference ratio becomes

SIR DSW ( t , φ ) = S Target ( t 0 , φ 0 ) χ ( t t 0 , φ φ 0 ) 2 R t 0 Q Reverb ( φ ) + AN 0 E T size 12{ ital "SIR" rSub { size 8{ ital "DSW"} } \( t,φ\) = { {S rSup {"Target"} size 12{ \( t rSub {0} } size 12{,φrSub {0} } size 12{ \) llineχ\( t - t rSub {0} size 12{,φ-φrSub {0} } size 12{ \) } rline rSup {2} }} over { size 12{R rSub { {} rSub { size 6{t rSub {0} } } } size 12{Q rSub {"Reverb"} } size 12{ \(φ\) + { { ital "AN" rSub {0} } over { size 12{E rSub {T} } } } }} } } } {}

We see that the best waveform for enhancing signal to interference ratio depends on the environmental Q function, and the assumed target Doppler.

The active sonar equation

The active sonar equation expresses the signal excess (SE) which is the part of the target signal to noise ratio that exceeds the sonar’s detection threshold (DT). In decibel quantities, it is given by:

SE = ESL + TS TL ST TL TR ( RL 0 AN 0 ) DT size 12{ ital "SE"= ital "ESL"+ ital "TS" - ital "TL" rSub { size 8{ ital "ST"} } - ital "TL" rSub { size 8{ ital "TR"} } - \( ital "RL" rSub { size 8{0} }⊕ital "AN" rSub { size 8{0} } \) - ital "DT"} {}

We are assuming that the active sonar uses a matched filter for detection. In the sonar equation, the transmitted energy signal level (ESL) is the sound pressure squared and integrated over the transmitted pulse length. The energy of the received echo (known as the echo energy level) is 10 *log 10 ( E R ) = ESL + TS TL ST TL TR size 12{"10""*log""10" \( E rSub { size 8{R} } \) = ital "ESL"+ ital "TS" - ital "TL" rSub { size 8{ ital "ST"} } - ital "TL" rSub { size 8{ ital "TR"} } } {} . Note that the echo energy level can be computed using a received echo pulse length, which due to sound channel dispersion can be longer than the transmitted pulse.

Using the properties of matched filters, the matched filter generates an output due to the target echo with peak power level of ESL + TS TL ST TL TR size 12{ ital "ESL"+ ital "TS" - ital "TL" rSub { size 8{ ital "ST"} } - ital "TL" rSub { size 8{ ital "TR"} } } {} .

AN 0 size 12{ ital "AN" rSub { size 8{0} } } {} is the ambient noise level in a 1 Hz band, and is assumed to be constant across the matched filter’s bandwidth, e.g. it is twice the spectral density of the ambient noise. AN 0 size 12{ ital "AN" rSub { size 8{0} } } {} and spectral density have units of Pa 2 / Hz size 12{ ital "Pa" rSup { size 8{2} } / ital "Hz"} {} , which is an energy quantity.

The matched filter noise output is RL 0 AN 0 size 12{ ital "RL" rSub { size 8{0} }⊕ital "AN" rSub { size 8{0} } } {} . The operation size 12{⊕} {} corresponds to power addition. Power addition converts the quantities back to units of power (Pa^2, volts^2, etc), adds the two power like quantities, and then reconverts back into decibel.

RL 0 AN 0 = 10 log 10 10 RL 0 / 10 + 10 AN 0 / 10 size 12{ ital "RL" rSub { size 8{0} }⊕ital "AN" rSub { size 8{0} } ="10""log" rSub { size 8{"10"} } left ("10" rSup { size 8{ ital "RL" rSub { size 6{0} } /"10"} } +"10" rSup { ital "AN" rSub { size 6{0} } /"10"} right )} {}

RL 0 size 12{ ital "RL" rSub { size 8{0} } } {} is the reverberation level in a 1 Hz band, or equivalently, the reverberation level when measured at the output of the matched filter.

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask