<< Chapter < Page Chapter >> Page >

For small angle, we can consider " sin θ θ " as a good approximation. Hence,

α = - m g L I θ

We have just seen the condition that results from the requirement of SHM. This condition requires that angular amplitude of oscillation should be a small angle.

Angular frequency

Comparing the equation obtained for angular acceleration with that of “ α = - ω 2 θ ”, we have :

ω = m g L I

There is yet another aspect about moment of inertia that we need to discuss. Note that we have considered that bob is a point mass. In that case,

I = m L 2

and

ω = m g L m L 2 = g L

We see that angular frequency is independent of mass. What happens if bob is not a point mass as in the case of real pendulum. In that case, angular frequency and other quantities dependent on angular frequency will be dependent on the MI of the bob – i.e. on shape, size, mass distribution etc.

We should understand that requirement of point mass arises due to the requirement of mass independent frequency of simple pendulum – not due to the requirement of SHM. In the nutshell, we summarize the requirement of simple pendulum that arises either due to the requirement of SHM or due to the requirement of mass independent frequency as :

  • The pivot is free of any energy loss due to friction.
  • The string is un-strechable and mass-less.
  • There is no other force (other than gravity) due to external agency.
  • The angular amplitude is small.
  • The ratio of length and dimension of bob should be large so that bob is approximated as point.

Time period and frequency

Time period of simple pendulum is obtained by applying defining equation as :

T = 2 π ω = 2 π L g

Frequency of simple pendulum is obtained by apply defining equation as :

ν = 1 T = 1 2 π g L

Special cases of simple pendulum

We have so far discussed a standard set up for the study of simple pendulum. In this section, we shall discuss certain special circumstances of simple pendulum. For example, we may be required to analyze motion of simple pendulum in accelerated frame of reference or we may be required to incorporate the effect of change in the length of simple pendulum.

Second pendulum

A simple pendulum having time period of 2 second is called “second” pendulum. It is intuitive to analyze why it is 2 second - not 1 second. In pendulum watch, the pendulum is the driver of second hand. It drives second hand once (increasing the reading by 1 second) for every swing. Since there are two swings in one cycle, the time period of second pendulum is 2 seconds.

Simple pendulum in accelerated frame

The time period of simple pendulum is affected by the acceleration of the frame of reference containing simple pendulum. We can carry out elaborate force or torque analysis in each case to determine time period of pendulum. However, we find that there is an easier way to deal with such situation. The analysis reveals that time period is governed by the “effective” acceleration or the “relative” acceleration given as :

g = g a

where g’ is effective acceleration and “ a ” is acceleration of frame of reference (a≤g). We can evaluate this vector relation for different situations.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Oscillation and wave motion. OpenStax CNX. Apr 19, 2008 Download for free at http://cnx.org/content/col10493/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Oscillation and wave motion' conversation and receive update notifications?

Ask