<< Chapter < Page Chapter >> Page >

Solving a lccde

In order for a linear constant-coefficient difference equation to be useful in analyzing a LTI system, we must be able tofind the systems output based upon a known input, x t , and a set of initial conditions. Two common methods exist for solving a LCCDE: the direct method and the indirect method , the latter being based on the Laplace-transform. Below we will briefly discussthe formulas for solving a LCCDE using each of these methods.

Direct method

The final solution to the output based on the direct method is the sum of two parts, expressed in the followingequation:

y t y h t y p t
The first part, y h t , is referred to as the homogeneous solution and the second part, y h t , is referred to as particular solution . The following method is very similar to that used to solve many differential equations, so if youhave taken a differential calculus course or used differential equations before then this should seem veryfamiliar.

Homogeneous solution

We begin by assuming that the input is zero, x t 0 .Now we simply need to solve the homogeneous differential equation:

k 0 N a k y t k 0
In order to solve this, we will make the assumption that the solution is in the form of an exponential. We willuse lambda, λ , to represent our exponential terms. We now have to solve thefollowing equation:
k 0 N a k λ t k 0
We can expand this equation out and factor out all of thelambda terms. This will give us a large polynomial in parenthesis, which is referred to as the characteristic polynomial . The roots of this polynomial will be the key to solving the homogeneousequation. If there are all distinct roots, then the general solution to the equation will be as follows:
y h t C 1 λ 1 t C 2 λ 2 t C N λ N t
However, if the characteristic equation contains multiple roots then the above general solution will be slightlydifferent. Below we have the modified version for an equation where λ 1 has K multiple roots:
y h t C 1 λ 1 t C 1 t λ 1 t C 1 t 2 λ 1 t C 1 t K 1 λ 1 t C 2 λ 2 t C N λ N t

Particular solution

The particular solution, y p t , will be any solution that will solve the general differential equation:

k 0 N a k y p t k k 0 M b k x t k
In order to solve, our guess for the solution to y p t will take on the form of the input, x t . After guessing at a solution to the above equation involving the particular solution, one onlyneeds to plug the solution into the differential equation and solve it out.

Indirect method

The indirect method utilizes the relationship between the differential equation and the Laplace-transform, discussed earlier , to find a solution. The basic idea is to convert the differentialequation into a Laplace-transform, as described above , to get the resulting output, Y s . Then by inverse transforming this and using partial-fractionexpansion, we can arrive at the solution.

L d d t y ( t ) = s Y ( s ) - y ( 0 )

This can be interatively extended to an arbitrary order derivative as in Equation [link] .

L d n d t n y ( t ) = s n Y ( s ) - m = 0 n - 1 s n - m - 1 y ( m ) ( 0 )

Now, the Laplace transform of each side of the differential equation can be taken

L k = 0 n a k d k d t k y ( t ) = L x ( t )

which by linearity results in

k = 0 n a k L d k d t k y ( t ) = L x ( t )

and by differentiation properties in

k = 0 n a k s k L y ( t ) - m = 0 k - 1 s k - m - 1 y ( m ) ( 0 ) = L x ( t ) .

Rearranging terms to isolate the Laplace transform of the output,

L y ( t ) = L x ( t ) + k = 0 n m = 0 k - 1 a k s k - m - 1 y ( m ) ( 0 ) k = 0 n a k s k .

Thus, it is found that

Y ( s ) = X ( s ) + k = 0 n m = 0 k - 1 a k s k - m - 1 y ( m ) ( 0 ) k = 0 n a k s k .

In order to find the output, it only remains to find the Laplace transform X ( s ) of the input, substitute the initial conditions, and compute the inverse Laplace transform of the result. Partial fraction expansions are often required for this last step. This may sound daunting while looking at Equation [link] , but it is often easy in practice, especially for low order differential equations. Equation [link] can also be used to determine the transfer function and frequency response.

As an example, consider the differential equation

d 2 d t 2 y ( t ) + 4 d d t y ( t ) + 3 y ( t ) = cos ( t )

with the initial conditions y ' ( 0 ) = 1 and y ( 0 ) = 0 Using the method described above, the Laplace transform of the solution y ( t ) is given by

Y ( s ) = s ( s 2 + 1 ) ( s + 1 ) ( s + 3 ) + 1 ( s + 1 ) ( s + 3 ) .

Performing a partial fraction decomposition, this also equals

Y ( s ) = . 25 1 s + 1 - . 35 1 s + 3 + . 1 s s 2 + 1 + . 2 1 s 2 + 1 .

Computing the inverse Laplace transform,

y ( t ) = ( . 25 e - t - . 35 e - 3 t + . 1 cos ( t ) + . 2 sin ( t ) ) u ( t ) .

One can check that this satisfies that this satisfies both the differential equation and the initial conditions.

Summary

One of the most important concepts of DSP is to be able to properly represent the input/output relationship to a given LTIsystem. A linear constant-coefficient difference equation (LCCDE) serves as a way to express just this relationship in a discrete-time system. Writing the sequenceof inputs and outputs, which represent the characteristics of the LTI system, as a difference equation helps in understandingand manipulating a system.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask