<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The symbols, notations, and properties of numbers that form the basis of algebra, as well as exponents and the rules of exponents, are introduced in this chapter. Each property of real numbers and the rules of exponents are expressed both symbolically and literally. Literal explanations are included because symbolic explanations alone may be difficult for a student to interpret.Objectives of this module: understand the power rules for powers, products, and quotients.

Overview

  • The Power Rule for Powers
  • The Power Rule for Products
  • The Power Rule for quotients

The power rule for powers

The following examples suggest a rule for raising a power to a power:

( a 2 ) 3 = a 2 a 2 a 2

Using the product rule we get

( a 2 ) 3 = a 2 + 2 + 2 ( a 2 ) 3 = a 3 2 ( a 2 ) 3 = a 6

Got questions? Get instant answers now!

( x 9 ) 4 = x 9 x 9 x 9 x 9 ( x 9 ) 4 = x 9 + 9 + 9 + 9 ( x 9 ) 4 = x 4 9 ( x 9 ) 4 = x 36

Got questions? Get instant answers now!

Power rule for powers

If x is a real number and n and m are natural numbers,
( x n ) m = x n m

To raise a power to a power, multiply the exponents.

Sample set a

Simplify each expression using the power rule for powers. All exponents are natural numbers.

( x 3 ) 4 = x 3 4 x 12 The box represents a step done mentally.

Got questions? Get instant answers now!

( y 5 ) 3 = y 5 3 = y 15

Got questions? Get instant answers now!

( d 20 ) 6 = d 20 6 = d 120

Got questions? Get instant answers now!

( x ) = x

Got questions? Get instant answers now!

Although we don’t know exactly what number is, the notation indicates the multiplication.

Practice set a

Simplify each expression using the power rule for powers.

The power rule for products

The following examples suggest a rule for raising a product to a power:

( a b ) 3 = a b a b a b Use the commutative property of multiplication . = a a a b b b = a 3 b 3

Got questions? Get instant answers now!

( x y ) 5 = x y x y x y x y x y = x x x x x y y y y y = x 5 y 5

Got questions? Get instant answers now!

( 4 x y z ) 2 = 4 x y z 4 x y z = 4 4 x x y y z z = 16 x 2 y 2 z 2

Got questions? Get instant answers now!

Power rule for products

If x and y are real numbers and n is a natural number,
( x y ) n = x n y n

To raise a product to a power, apply the exponent to each and every factor.

Sample set b

Make use of either or both the power rule for products and power rule for powers to simplify each expression.

( a x y ) 4 = a 4 x 4 y 4

Got questions? Get instant answers now!

( 3 a b ) 2 = 3 2 a 2 b 2 = 9 a 2 b 2 Don't forget to apply the exponent to the 3!

Got questions? Get instant answers now!

( 2 s t ) 5 = 2 5 s 5 t 5 = 32 s 5 t 5

Got questions? Get instant answers now!

( a b 3 ) 2 = a 2 ( b 3 ) 2 = a 2 b 6 We used two rules here . First, the power rule for products . Second, the power rule for powers.

Got questions? Get instant answers now!

( 7 a 4 b 2 c 8 ) 2 = 7 2 ( a 4 ) 2 ( b 2 ) 2 ( c 8 ) 2 = 49 a 8 b 4 c 16

Got questions? Get instant answers now!

If 6 a 3 c 7 0 , then ( 6 a 3 c 7 ) 0 = 1 Recall that x 0 = 1 for x 0.

Got questions? Get instant answers now!

[ 2 ( x + 1 ) 4 ] 6 = 2 6 ( x + 1 ) 24 = 64 ( x + 1 ) 24

Got questions? Get instant answers now!

Practice set b

Make use of either or both the power rule for products and the power rule for powers to simplify each expression.

( 3 b x y ) 2

9 b 2 x 2 y 2

Got questions? Get instant answers now!

[ 4 t ( s 5 ) ] 3

64 t 3 ( s 5 ) 3

Got questions? Get instant answers now!

( 9 x 3 y 5 ) 2

81 x 6 y 10

Got questions? Get instant answers now!

( 1 a 5 b 8 c 3 d ) 6

a 30 b 48 c 18 d 6

Got questions? Get instant answers now!

[ ( a + 8 ) ( a + 5 ) ] 4

( a + 8 ) 4 ( a + 5 ) 4

Got questions? Get instant answers now!

[ ( 12 c 4 u 3 ( w 3 ) 2 ] 5

12 5 c 20 u 15 ( w 3 ) 10

Got questions? Get instant answers now!

[ 10 t 4 y 7 j 3 d 2 v 6 n 4 g 8 ( 2 k ) 17 ] 4

10 4 t 16 y 28 j 12 d 8 v 24 n 16 g 32 ( 2 k ) 68

Got questions? Get instant answers now!

( x 3 x 5 y 2 y 6 ) 9

( x 8 y 8 ) 9 = x 72 y 72

Got questions? Get instant answers now!

( 10 6 10 12 10 5 ) 10

10 230

Got questions? Get instant answers now!

The power rule for quotients

The following example suggests a rule for raising a quotient to a power.

( a b ) 3 = a b a b a b = a a a b b b = a 3 b 3

Got questions? Get instant answers now!

Power rule for quotients

If x and y are real numbers and n is a natural number,
( x y ) n = x n y n , y 0

To raise a quotient to a power, distribute the exponent to both the numerator and denominator.

Sample set c

Make use of the power rule for quotients, the power rule for products, the power rule for powers, or a combination of these rules to simplify each expression. All exponents are natural numbers.

( 2 x b ) 4 = ( 2 x ) 4 b 4 = 2 4 x 4 b 4 = 16 x 4 b 4

Got questions? Get instant answers now!

( a 3 b 5 ) 7 = ( a 3 ) 7 ( b 5 ) 7 = a 21 b 35

Got questions? Get instant answers now!

( 3 c 4 r 2 2 3 g 5 ) 3 = 3 3 c 12 r 6 2 9 g 15 = 27 c 12 r 6 2 9 g 15 or 27 c 12 r 6 512 g 15

Got questions? Get instant answers now!

[ ( a 2 ) ( a + 7 ) ] 4 = ( a 2 ) 4 ( a + 7 ) 4

Got questions? Get instant answers now!

[ 6 x ( 4 x ) 4 2 a ( y 4 ) 6 ] 2 = 6 2 x 2 ( 4 x ) 8 2 2 a 2 ( y 4 ) 12 = 36 x 2 ( 4 x ) 8 4 a 2 ( y 4 ) 12 = 9 x 2 ( 4 x ) 8 a 2 ( y 4 ) 12

Got questions? Get instant answers now!

( a 3 b 5 a 2 b ) 3 = ( a 3 2 b 5 1 ) 3 We can simplify within the parentheses . We have a rule that tells us to proceed this way . = ( a b 4 ) 3 = a 3 b 12 ( a 3 b 5 a 2 b ) 3 = a 9 b 15 a 6 b 3 = a 9 6 b 15 3 = a 3 b 12 We could have actually used the power rule for quotients first . Distribute the exponent, then simplify using the other rules . It is probably better, for the sake of consistency, to work inside the parentheses first.

Got questions? Get instant answers now!

( a r b s c t ) w = a r w b s w c t w

Got questions? Get instant answers now!

Practice set c

Make use of the power rule for quotients, the power rule for products, the power rule for powers, or a combination of these rules to simplify each expression.

( 2 x 3 y ) 3

8 x 3 27 y 3

Got questions? Get instant answers now!

( x 2 y 4 z 7 a 5 b ) 9

x 18 y 36 z 63 a 45 b 9

Got questions? Get instant answers now!

[ 2 a 4 ( b 1 ) 3 b 3 ( c + 6 ) ] 4

16 a 16 ( b 1 ) 4 81 b 12 ( c + 6 ) 4

Got questions? Get instant answers now!

( 8 a 3 b 2 c 6 4 a 2 b ) 3

8 a 3 b 3 c 18

Got questions? Get instant answers now!

[ ( 9 + w ) 2 ( 3 + w ) 5 ] 10

( 9 + w ) 20 ( 3 + w ) 50

Got questions? Get instant answers now!

[ 5 x 4 ( y + 1 ) 5 x 4 ( y + 1 ) ] 6

1 , if x 4 ( y + 1 ) 0

Got questions? Get instant answers now!

( 16 x 3 v 4 c 7 12 x 2 v c 6 ) 0

1 , if x 2 v c 6 0

Got questions? Get instant answers now!

Exercises

Use the power rules for exponents to simplify the following problems. Assume that all bases are nonzero and that all variable exponents are natural numbers.

( 10 a 2 b ) 2

100 a 4 b 2

Got questions? Get instant answers now!

( x 2 y 3 z 5 ) 4

x 8 y 12 z 20

Got questions? Get instant answers now!

( x 3 y 2 z 4 ) 5

x 15 y 10 z 20

Got questions? Get instant answers now!

( a 4 b 7 c 6 d 8 ) 8

a 32 b 56 c 48 d 64

Got questions? Get instant answers now!

( 1 8 c 10 d 8 e 4 f 9 ) 2

1 64 c 20 d 16 e 8 f 18

Got questions? Get instant answers now!

( x y ) 4 ( x 2 y 4 )

x 6 y 8

Got questions? Get instant answers now!

( a 2 b 3 ) 3 ( a 3 b 3 ) 4

a 18 b 21

Got questions? Get instant answers now!

( h 3 k 5 ) 2 ( h 2 k 4 ) 3

Got questions? Get instant answers now!

( x 4 y 3 z ) 4 ( x 5 y z 2 ) 2

x 26 y 14 z 8

Got questions? Get instant answers now!

( a b 3 c 2 ) 5 ( a 2 b 2 c ) 2

Got questions? Get instant answers now!

( 6 a 2 b 8 ) 2 ( 3 a b 5 ) 2

4 a 2 b 6

Got questions? Get instant answers now!

( a 3 b 4 ) 5 ( a 4 b 4 ) 3

Got questions? Get instant answers now!

( x 6 y 5 ) 3 ( x 2 y 3 ) 5

x 8

Got questions? Get instant answers now!

( a 8 b 10 ) 3 ( a 7 b 5 ) 3

Got questions? Get instant answers now!

( m 5 n 6 p 4 ) 4 ( m 4 n 5 p ) 4

m 4 n 4 p 12

Got questions? Get instant answers now!

( x 8 y 3 z 2 ) 5 ( x 6 y z ) 6

Got questions? Get instant answers now!

( 10 x 4 y 5 z 11 ) 3 ( x y 2 ) 4

1000 x 8 y 7 z 33

Got questions? Get instant answers now!

( 9 a 4 b 5 ) ( 2 b 2 c ) ( 3 a 3 b ) ( 6 b c )

Got questions? Get instant answers now!

( 2 x 3 y 3 ) 4 ( 5 x 6 y 8 ) 2 ( 4 x 5 y 3 ) 2

25 x 14 y 22

Got questions? Get instant answers now!

( 3 a b 4 x y ) 3

27 a 3 b 3 64 x 3 y 3

Got questions? Get instant answers now!

( 3 a 2 b 3 c 4 ) 3

27 a 6 b 9 c 12

Got questions? Get instant answers now!

( 4 2 a 3 b 7 b 5 c 4 ) 2

Got questions? Get instant answers now!

[ x 2 ( y 1 ) 3 ( x + 6 ) ] 4

x 8 ( y 1 ) 12 ( x + 6 ) 4

Got questions? Get instant answers now!

( x n + 2 ) 3 x 2 n

x n + 6

Got questions? Get instant answers now!

Exercises for review

( [link] ) Is there a smallest integer? If so, what is it?

no

Got questions? Get instant answers now!

( [link] ) Use the distributive property to expand 5 a ( 2 x + 8 ) .

Got questions? Get instant answers now!

( [link] ) Find the value of ( 5 3 ) 2 + ( 5 + 4 ) 3 + 2 4 2 2 5 1 .

147

Got questions? Get instant answers now!

( [link] ) Assuming the bases are not zero, find the value of ( 4 a 2 b 3 ) ( 5 a b 4 ) .

Got questions? Get instant answers now!

( [link] ) Assuming the bases are not zero, find the value of 36 x 10 y 8 z 3 w 0 9 x 5 y 2 z .

4 x 5 y 6 z 2

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask