<< Chapter < Page Chapter >> Page >

3 x 2 + 4 x + 5 ( x + 6 ) ( x 2 ) + 2 x 2 + x + 6 x 2 + 4 x 12 x 2 4 x 6 x 2 + 4 x 12 Factor the denominators to determine if they're the same . 3 x 2 + 4 x + 5 ( x + 6 ) ( x 2 ) + 2 x 2 + x + 6 ( x + 6 ) ( x 2 ) x 2 4 x 6 ( x + 6 ) ( x 2 ) The denominators are the same . Combine the numerators being careful to note the negative sign . 3 x 2 + 4 x + 5 + 2 x 2 + x + 6 ( x 2 4 x + 6 ) ( x + 6 ) ( x 2 ) 3 x 2 + 4 x + 5 + 2 x 2 + x + 6 x 2 + 4 x + 6 ( x + 6 ) ( x 2 ) 4 x 2 + 9 x + 17 ( x + 6 ) ( x 2 )

Practice set a

Add or Subtract the following rational expressions.

4 9 + 2 9

2 3

3 b + 2 b

5 b

5 x 2 y 2 3 x 2 y 2

x y 2

x + y x y + 2 x + 3 y x y

3 x + 4 y x y

4 x 2 x + 4 3 x + 10 x 2 + 2 x + 5 3 x + 10

3 x 2 3 x 1 3 x + 10

x ( x + 1 ) x ( 2 x + 3 ) + 3 x 2 x + 7 2 x 2 + 3 x

4 x 2 + 7 x ( 2 x + 3 )

4 x + 3 x 2 x 6 8 x 4 ( x + 2 ) ( x 3 )

4 x + 7 ( x + 2 ) ( x 3 )

5 a 2 + a 4 2 a ( a 6 ) + 2 a 2 + 3 a + 4 2 a 2 12 a + a 2 + 2 2 a 2 12 a

4 a 2 + 2 a + 1 a ( a 6 )

8 x 2 + x 1 x 2 6 x + 8 + 2 x 2 + 3 x x 2 6 x + 8 5 x 2 + 3 x 4 ( x 4 ) ( x 2 )

5 x 2 + x + 3 ( x 4 ) ( x 2 )

Fractions with different denominators

Sample set b

Add or Subtract the following rational expressions.

4 a 3 y + 2 a 9 y 2 . The denominators are  n o t  the same . Find the LCD . By inspection, the LCD is 9 y 2 . 9 y 2 + 2 a 9 y 2 The denominator of the first rational expression has been multiplied by 3 y , so the numerator must be multiplied by 3 y . 4 a · 3 y = 12 a y 12 a y 9 y 2 + 2 a 9 y 2 The denominators are now the same . Add the numerators . 12 a y + 2 a 9 y 2

3 b b + 2 + 5 b b 3 . The denominators are n o t the same . The LCD is ( b + 2 ) ( b 3 ) . ( b + 2 ) ( b 3 ) + ( b + 2 ) ( b 3 ) The denominator of the first rational expression has been multiplied by b 3 , so the numerator must be multiplied by b 3. 3 b ( b 3 ) 3 b ( b 3 ) ( b + 2 ) ( b 3 ) + ( b + 2 ) ( b 3 ) The denominator of the second rational expression has been multiplied by b + 2 , so the numerator must be multiplied by b + 2. 5 b ( b + 2 ) 3 b ( b 3 ) ( b + 2 ) ( b 3 ) + 5 b ( b + 2 ) ( b + 2 ) ( b 3 ) The denominators are now the same . Add the numerators . 3 b ( b 3 ) + 5 b ( b + 2 ) ( b 3 ) ( b + 2 ) = 3 b 2 9 b + 5 b 2 + 10 b ( b 3 ) ( b + 2 ) = 8 b 2 + b ( b 3 ) ( b 2 )

x + 3 x 1 + x 2 4 x + 4 . The denominators are  n o t  the same . Find the LCD . x + 3 x 1 + x 2 4 ( x + 1 ) The LCD is  ( x + 1 ) ( x 1 ) 4 ( x + 1 ) ( x 1 ) + 4 ( x + 1 ) ( x 1 ) The denominator of the first rational expression has been multiplied by  4 ( x + 1 )  so  the numerator must be multiplied by  4 ( x + 1 ) . 4 ( x + 3 ) ( x + 1 ) 4 ( x + 3 ) ( x + 1 ) 4 ( x + 1 ) ( x 1 ) + 4 ( x + 1 ) ( x 1 ) The denominator of the second rational expression has been multiplied by  x 1 so the numerator must be multiplied by  x 1. ( x 1 ) ( x 2 ) 4 ( x + 3 ) ( x + 1 ) 4 ( x + 1 ) ( x 1 ) + ( x 1 ) ( x 2 ) 4 ( x + 1 ) ( x 1 ) The denominators are now the same. Add the numerators. 4 ( x + 3 ) ( x + 1 ) + ( x 1 ) ( x 2 ) 4 ( x + 1 ) ( x 1 ) 4 ( x 2 + 4 x + 3 ) + x 2 3 x + 2 4 ( x + 1 ) ( x 1 ) 4 x 2 + 16 x + 12 + x 2 3 x + 2 4 ( x + 1 ) ( x 1 ) = 5 x 2 + 13 x + 14 4 ( x + 1 ) ( x 1 )

x + 5 x 2 7 x + 12 + 3 x 1 x 2 2 x 3 Determine the LCD . x + 5 ( x 4 ) ( x 3 ) + 3 x 1 ( x 3 ) ( x + 1 ) The LCD is ( x 4 ) ( x 3 ) ( x + 1 ) . ( x 4 ) ( x 3 ) ( x + 1 ) + ( x 4 ) ( x 3 ) ( x + 1 ) The first numerator must be multiplied by x + 1 and the second by x 4. ( x + 5 ) ( x + 1 ) ( x 4 ) ( x 3 ) ( x + 1 ) + ( 3 x 1 ) ( x 4 ) ( x 4 ) ( x 3 ) ( x + 1 ) The denominators are now the same . Add the numerators . ( x + 5 ) ( x + 1 ) + ( 3 x 1 ) ( x 4 ) ( x 4 ) ( x 3 ) ( x + 1 ) x 2 + 6 x + 5 + 3 x 2 13 x + 4 ( x 4 ) ( x 3 ) ( x + 1 ) 4 x 2 7 x + 9 ( x 4 ) ( x 3 ) ( x + 1 )

a + 4 a 2 + 5 a + 6 a 4 a 2 5 a 24 Determine the LCD. a + 4 ( a + 3 ) ( a + 2 ) a 4 ( a + 3 ) ( a 8 ) The LCD is  ( a + 3 ) ( a + 2 ) ( a 8 ) . ( a + 3 ) ( a + 2 ) ( a 8 ) ( a + 3 ) ( a + 2 ) ( a 8 ) The first numerator must be multiplied by  a 8  and the second by  a + 2. ( a + 4 ) ( a 8 ) ( a + 3 ) ( a + 2 ) ( a 8 ) ( a 4 ) ( a + 2 ) ( a + 3 ) ( a + 2 ) ( a 8 ) The denominators are now the same . Subtract the numerators .  ( a + 4 ) ( a 8 ) ( a 4 ) ( a + 2 ) ( a + 3 ) ( a + 2 ) ( a 8 ) a 2 4 a 32 ( a 2 2 a 8 ) ( a + 3 ) ( a + 2 ) ( a 8 ) a 2 4 a 32 a 2 + 2 a + 8 ( a + 3 ) ( a + 2 ) ( a 8 ) 2 a 24 ( a + 3 ) ( a + 2 ) ( a 8 ) Factor  2  from the numerator .  2 ( a + 12 ) ( a + 3 ) ( a + 2 ) ( a 8 )

3 x 7 x + 5 x x 7 . The denominators are n e a r l y the same.  They differ only in sign. Our technique is to factor  1  from one of them. 3 x 7 x = 3 x ( x 7 ) = 3 x x 7 Factor  1  from the first term .  3 x 7 x + 5 x x 7 = 3 x x 7 + 5 x x 7 = 3 x + 5 x x 7 = 2 x x 7

Practice set b

Add or Subtract the following rational expressions.

3 x 4 a 2 + 5 x 12 a 3

9 a x + 5 x 12 a 3

5 b b + 1 + 3 b b 2

8 b 2 7 b ( b + 1 ) ( b 2 )

a 7 a + 2 + a 2 a + 3

2 a 2 4 a 25 ( a + 2 ) ( a + 3 )

4 x + 1 x + 3 x + 5 x 3

3 x 2 19 x 18 ( x + 3 ) ( x 3 )

2 y 3 y + 3 y + 1 y + 4

5 y 2 + 6 y 12 y ( y + 4 )

a 7 a 2 3 a + 2 + a + 2 a 2 6 a + 8

2 a 2 10 a + 26 ( a 2 ) ( a 1 ) ( a 4 )

6 b 2 + 6 b + 9 2 b 2 + 4 b + 4

4 b 2 + 12 b + 6 ( b + 3 ) 2 ( b + 2 ) 2

x x + 4 x 2 3 x 3

2 x 2 5 x + 8 3 ( x + 4 ) ( x 1 )

5 x 4 x + 7 x x 4

2 x x 4

Sample set c

Combine the following rational expressions.

3 + 7 x 1 . Rewrite the expression. 3 1 + 7 x 1 The LCD is  x 1. 3 ( x 1 ) x 1 + 7 x 1 = 3 x 3 x 1 + 7 x 1 = 3 x 3 + 7 x 1 = 3 x + 4 x 1

3 y + 4 y 2 y + 3 y 6 . Rewrite the expression. 3 y + 4 1 y 2 y + 3 y 6 The LCD is  y 6. ( 3 y + 4 ) ( y 6 ) y 6 y 2 y + 3 y 6 = ( 3 y + 4 ) ( y 6 ) ( y 2 y + 3 ) y 6 = 3 y 2 14 y 24 y 2 + y 3 y 6 = 2 y 2 13 y 27 y 6

Practice set c

Simplify 8 + 3 x 6 .

8 x 45 x 6

Simplify 2 a 5 a 2 + 2 a 1 a + 3 .

a 2 a 14 a + 3

Exercises

For the following problems, add or subtract the rational expressions.

3 8 + 1 8

1 2

1 9 + 4 9

7 10 2 5

3 10

3 4 5 12

3 4 x + 5 4 x

2 x

2 7 y + 3 7 y

6 y 5 x + 8 y 5 x

14 y 5 x

9 a 7 b + 3 a 7 b

15 n 2 m 6 n 2 m

9 n 2 m

8 p 11 q 3 p 11 q

y + 4 y 6 + y + 8 y 6

2 y + 12 y 6

y 1 y + 4 + y + 7 y + 4

a + 6 a 1 + 3 a + 5 a 1

4 a + 11 a 1

5 a + 1 a + 7 + 2 a 6 a + 7

x + 1 5 x + x + 3 5 x

2 x + 4 5 x

a 6 a + 2 + a 2 a + 2

b + 1 b 3 + b + 2 b 3

2 b + 3 b 3

a + 2 a 5 a + 3 a 5

b + 7 b 6 b 1 b 6

8 b 6

2 b + 3 b + 1 b 4 b + 1

3 y + 4 y + 8 2 y 5 y + 8

y + 9 y + 8

2 a 7 a 9 + 3 a + 5 a 9

8 x 1 x + 2 15 x + 7 x + 2

7 x 8 x + 2

7 2 x 2 + 1 6 x 3

2 3 x + 4 6 x 2

2 ( x + 1 ) 3 x 2

5 6 y 3 2 18 y 5

2 5 a 2 1 10 a 3

4 a 1 10 a 3

3 x + 1 + 5 x 2

4 x 6 + 1 x 1

5 ( x 2 ) ( x 6 ) ( x 1 )

2 a a + 1 3 a a + 4

6 y y + 4 + 2 y y + 3

2 y ( 4 y + 13 ) ( y + 4 ) ( y + 3 )

x 1 x 3 + x + 4 x 4

x + 2 x 5 + x 1 x + 2

2 x 2 2 x + 9 ( x 5 ) ( x + 2 )

a + 3 a 3 a + 2 a 2

y + 1 y 1 y + 4 y 4

6 y ( y 1 ) ( y 4 )

x 1 ( x + 2 ) ( x 3 ) + x + 4 x 3

y + 2 ( y + 1 ) ( y + 6 ) + y 2 y + 6

y 2 ( y + 1 ) ( y + 6 )

2 a + 1 ( a + 3 ) ( a 3 ) a + 2 a + 3

3 a + 5 ( a + 4 ) ( a 1 ) 2 a 1 a 1

2 a 2 4 a + 9 ( a + 4 ) ( a 1 )

2 x x 2 3 x + 2 + 3 x 2

4 a a 2 2 a 3 + 3 a + 1

7 a 9 ( a + 1 ) ( a 3 )

3 y y 2 7 y + 12 y 2 y 3

x 1 x 2 + 6 x + 8 + x + 3 x 2 + 2 x 8

2 ( x 2 + x + 4 ) ( x + 2 ) ( x 2 ) ( x + 4 )

a 4 a 2 + 2 a 3 + a + 2 a 2 + 3 a 4

b 3 b 2 + 9 b + 20 + b + 4 b 2 + b 12

2 b 2 + 3 b + 29 ( b 3 ) ( b + 4 ) ( b + 5 )

y 1 y 2 + 4 y 12 y + 3 y 2 + 6 y 16

x + 3 x 2 + 9 x + 14 x 5 x 2 4

x + 29 ( x 2 ) ( x + 2 ) ( x + 7 )

x 1 x 2 4 x + 3 + x + 3 x 2 5 x + 6 + 2 x x 2 3 x + 2

4 x x 2 + 6 x + 8 + 3 x 2 + x 6 + x 1 x 2 + x 12

5 x 4 3 x 3 34 x 2 + 34 x 60 ( x 2 ) ( x + 2 ) ( x 3 ) ( x + 3 ) ( x + 4 )

y + 2 y 2 1 + y 3 y 2 3 y 4 y + 3 y 2 5 y + 4

a 2 a 2 9 a + 18 + a 2 a 2 4 a 12 a 2 a 2 a 6

( a + 5 ) ( a 2 ) ( a + 2 ) ( a 3 ) ( a 6 )

y 2 y 2 + 6 y + y + 4 y 2 + 5 y 6

a + 1 a 3 + 3 a 2 a + 6 a 2 a

a 3 8 a 2 18 a 1 a 2 ( a + 3 ) ( a 1 )

4 3 b 2 12 b 2 6 b 2 6 b

3 2 x 5 4 x 4 + 2 8 x 3 + 24 x 2

x 3 + 2 x 2 + 6 x + 18 4 x 4 ( x 2 ) ( x + 3 )

x + 2 12 x 3 + x + 1 4 x 2 + 8 x 12 x + 3 16 x 2 32 x + 16

2 x x 2 9 x + 1 4 x 2 12 x x 4 8 x 3

14 x 4 9 x 3 2 x 2 + 9 x 36 8 x 3 ( x + 3 ) ( x 3 )

4 + 3 x + 2

8 + 2 x + 6

8 x + 50 x + 6

1 + 4 x 7

3 + 5 x 6

3 x 13 x 6

2 + 4 x x + 5

1 + 3 a a 1

2 a + 1 a 1

6 4 y y + 2

2 x + x 2 4 x + 1

3 x 2 + 2 x 4 x + 1

3 y + 4 y 2 + 2 y 5 y + 3

x + 2 + x 2 + 4 x 1

2 x 2 + x + 2 x 1

b + 6 + 2 b + 5 b 2

3 x 1 x 4 8

5 x + 31 x 4

4 y + 5 y + 1 9

2 y 2 + 11 y 1 y + 4 3 y

( y 2 + y + 1 ) y + 4

5 y 2 2 y + 1 y 2 + y 6 2

4 a 3 + 2 a 2 + a 1 a 2 + 11 a + 28 + 3 a

7 a 3 + 35 a 2 + 85 a 1 ( a + 7 ) ( a + 4 )

2 x 1 x + 6 x x 1

5 m 6 m + 3 m m 6

2 m m 6

a + 7 8 3 a + 2 a + 1 3 a 8

2 y + 4 4 5 y 9 5 y 4

2 y 13 5 y 4

m 1 1 m 2 m 1

Exercises for review

( [link] ) Simplify ( x 3 y 2 z 5 ) 6 ( x 2 y z ) 2 .

x 22 y 14 z 32

( [link] ) Write 6 a 3 b 4 c 2 a 1 b 5 c 3 so that only positive exponents appear.

( [link] ) Construct the graph of y = 2 x + 4.
An xy coordinate plane with gridlines, labeled negative five to five on both axes.

A graph of a line passing through three points with coordinates zero, four; one, two; and two, zero.

( [link] ) Find the product: x 2 3 x 4 x 2 + 6 x + 5 · x 2 + 5 x + 6 x 2 2 x 8 .

( [link] ) Replace N with the proper quantity: x + 3 x 5 = N x 2 7 x + 10 .

( x + 3 ) ( x 2 )

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

Ask