<< Chapter < Page Chapter >> Page >

Greenhouse gases other than carbon dioxide are shorter-lived: methane is removed from the atmosphere in around a decade, and chlorofluorocarbons break down within a century. Individual water molecules spend only a few days at a time in the atmosphere, but unlike the other greenhouse gases, the total amount of water vapor in the atmosphere remains constant. Water evaporated from the oceans replaces water lost by condensation and precipitation.

Changing the composition of the Earth's atmosphere also changes the climate. Do you remember the Snowball Earth — how increasing ice cover also increased the Earth's albedo, eventually covering the entire planet in ice and snow? Today's climate is temperate—so we must have escaped this frozen trap. But how? The leading hypothesis is that the composition of the Earth's atmosphere changed, with volcanoes slowly adding more and more carbon dioxide to it. Without access to the oceans, plants, or surface rocks, this carbon dioxide was not removed from the atmosphere and so continued to build up over millions of years. Eventually, the additional warming caused by the increase in greenhouse gases overcame the cooling caused by the snow's high albedo, and temperatures rose enough to melt the ice, freeing the Earth.

For most of Earth's history, carbon dioxide concentrations have been higher than they are today. As a consequence, past climates have often been very warm. During the late stage of the dinosaur era (the Cretaceous , a period that lasted between 65 and 145 million years ago), carbon dioxide levels were about 5 times higher than they are today, and the average global temperatures were more than 10 o C higher than today's. There were no large ice sheets, and dinosaur fossils from this period have been found as far north as Alaska. These animals would not survive the cold conditions found in the arctic today. Further south, fossil crocodiles from 60 million years ago have been found in North Dakota. The modern average winter temperature in North Dakota is around -10 o C –but being cold-blooded, crocodiles are most at home when the air temperature is around 30 o C! The climate was warmer in the past when the amount of carbon dioxide was higher.

Review questions

The text describes how the high albedo of snow acts as a positive feedback—if the Earth is made cooler, the highly reflective snow can act to further cool the Earth. Today, part of the Earth is covered with snow and ice. Can you describe a mechanism by which warmer temperatures would also produce a positive feedback—this time heating the Earth further—through a similar albedo mechanism?

Got questions? Get instant answers now!

Mars is colder than the Earth. Venus, on the other hand, is much hotter, with average surface temperatures of around 450 o C. Venus is closer to the Sun than the Earth is, and so receives about twice as much solar radiation. Venus's atmosphere is also different than Earth's, as it is much thicker and mainly consists of carbon dioxide. Using the terms insolation    and greenhouse gases    , can you suggest reasons why Venus is so hot?

Got questions? Get instant answers now!

Oxygen makes up over 20% of Earth's atmosphere, while carbon dioxide makes up less than 0.04%. Oxygen is largely transparent to both visible and infrared light. Explain why carbon dioxide is a more important greenhouse gas in the Earth's atmosphere than oxygen, even though there is much more oxygen than carbon dioxide.

Got questions? Get instant answers now!

Figure Insolation shows the insolation at the surface of the Earth. The Earth is spherical, so we would expect the values to be the same for places of the same latitude. But notice that this is not true – compare, for example, central Africa with the Atlantic Ocean at the same latitude. What feature of the atmosphere might explain this variation, and why?

Got questions? Get instant answers now!

Resources

The National Aeronautical and Space Administration (NASA) Earth Observatory website has an array of climate resources. For a more in-depth discussion of Earth's energy budget, go to (External Link)

Are you interested in finding more about the controversial Snowball Earth hypothesis? The National Science foundation and Harvard University have set up a website with more about the hypothesis and the evidence. Go to (External Link)

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask