<< Chapter < Page Chapter >> Page >

Relations among elements of a set have wide possibilities. A systematic approach to study them is facilitated by recognizing different relation types. It should be noted that all relation types described here are relation on one set.

We describe a relation on set itself as :

Relation on A
A relation “R” from set “A” to “A” is called a “relation on A”.

In this module, we shall be using a symbol, “xRy” to denote an instance of relation (ordered pair). The symbol conveys that the instance of relation denoted by the symbol is an ordered pair (x,y), which follows relation “R”.

Void relation

Relation is a subset of Cartesian product of two sets. We have seen that power set of Cartesian product “ A × B ” is a set of all possible relations among the elements of sets “A” and “B”. In the case of “relation on A”, the power set of Cartesian product “ A × A ” is a set of all possible relations among the elements of set “A”.

One of the subsets of the power set is empty set or void set. This subset without any element is called the void relation.

R = φ = { }

Universal relation

Universal relation is the widest possible relation. This relation consists of all ordered pairs of the Cartesian product “ A × A ”.

R = A × A

Consider a set A = { 1,2,3 } . Then, universal relation set is :

R = { 1,1 , 1,2 , 1,3 , 2,1 ,

2,2 , 2,3 , 3,1 , 3,2 , 3,3 }

Identity relation

An identity relation is defined as :

Identity relation
In an identity relation "R", every element of the set “A” is related to itself only.

Note the conditions conveyed through words “every” and “only”. The word “every” conveys that identity relation consists of ordered pairs of element with itself - all of them. The word “only” conveys that this relation does not consist of any other combination.

Consider a set A = { 1,2,3 } . Then, its identity relation is :

R = { 1,1 , 2,2 , 3,3 }

It is evident that a set has only one such relation. This relation, as we can see, identifies the set - as it identifies each elements of the set, which are related to itself. By looking at the relation, we can identify the set itself. For this reason, the name of this relation is identity relation. In set builder form, we express an identity relation as

R = { x , x : for all x A }

The qualification of the relation is that first and second element of the ordered pair is same element, which belongs to set A.

The followings are not an identity relation :

R 1 = { 1,1 , 2,2 }

R 2 = { 1,1 , 2,2 , 3,3 , 1,2 , 1,3 }

First one is not an identity relation as it does not include the pairing of remaining element “3”. Second is not an identity relation, because there are other combinations of pairs in the relation.

Reflexive relation

Reflexive relation is an expansion of identity relation. In the simple word, reflexive relation is plus identity relation.

Reflexive relation
In reflexive relation, "R", every element of the set “A” is related to itself.

The definition of reflexive relation is exactly same as that of identity relation except that it misses the word “only” in the end of the sentence. The implication is that this relation includes identity relation and permits other combination of paired elements as well.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask