<< Chapter < Page Chapter >> Page >

Try it

[link] represents the amount, in inches, of annual rainfall in a sample of towns. What fraction of towns surveyed get between 11.03 and 13.05 inches of rainfall each year?

Try it solutions

9 50

[link] contains the total number of deaths worldwide as a result of earthquakes for the period from 2000 to 2012.

Year Total Number of Deaths
2000 231
2001 21,357
2002 11,685
2003 33,819
2004 228,802
2005 88,003
2006 6,605
2007 712
2008 88,011
2009 1,790
2010 320,120
2011 21,953
2012 768
Total 823,356

Answer the following questions.

  1. What is the frequency of deaths measured from 2006 through 2009?
  2. What percentage of deaths occurred after 2009?
  3. What is the relative frequency of deaths that occurred in 2003 or earlier?
  4. What is the percentage of deaths that occurred in 2004?
  5. What kind of data are the numbers of deaths?
  6. The Richter scale is used to quantify the energy produced by an earthquake. Examples of Richter scale numbers are 2.3, 4.0, 6.1, and 7.0. What kind of data are these numbers?
  1. 97,118 (11.8%)
  2. 41.6%
  3. 67,092/823,356 or 0.081 or 8.1 %
  4. 27.8%
  5. Quantitative discrete
  6. Quantitative continuous

Try it

[link] contains the total number of fatal motor vehicle traffic crashes in the United States for the period from 1994 to 2011.

Year Total Number of Crashes Year Total Number of Crashes
1994 36,254 2004 38,444
1995 37,241 2005 39,252
1996 37,494 2006 38,648
1997 37,324 2007 37,435
1998 37,107 2008 34,172
1999 37,140 2009 30,862
2000 37,526 2010 30,296
2001 37,862 2011 29,757
2002 38,491 Total 653,782
2003 38,477

Answer the following questions.

  1. What is the frequency of deaths measured from 2000 through 2004?
  2. What percentage of deaths occurred after 2006?
  3. What is the relative frequency of deaths that occurred in 2000 or before?
  4. What is the percentage of deaths that occurred in 2011?
  5. What is the cumulative relative frequency for 2006? Explain what this number tells you about the data.

Try it solutions

  1. 190,800 (29.2%)
  2. 24.9%
  3. 260,086/653,782 or 39.8%
  4. 4.6%
  5. 75.1% of all fatal traffic crashes for the period from 1994 to 2011 happened from 1994 to 2006.

References

“State&County QuickFacts,” U.S. Census Bureau. http://quickfacts.census.gov/qfd/download_data.html (accessed May 1, 2013).

“State&County QuickFacts: Quick, easy access to facts about people, business, and geography,” U.S. Census Bureau. http://quickfacts.census.gov/qfd/index.html (accessed May 1, 2013).

“Table 5: Direct hits by mainland United States Hurricanes (1851-2004),” National Hurricane Center, http://www.nhc.noaa.gov/gifs/table5.gif (accessed May 1, 2013).

“Levels of Measurement,” http://infinity.cos.edu/faculty/woodbury/stats/tutorial/Data_Levels.htm (accessed May 1, 2013).

Courtney Taylor, “Levels of Measurement,” about.com, http://statistics.about.com/od/HelpandTutorials/a/Levels-Of-Measurement.htm (accessed May 1, 2013).

David Lane. “Levels of Measurement,” Connexions, http://cnx.org/content/m10809/latest/ (accessed May 1, 2013).

Chapter review

Some calculations generate numbers that are artificially precise. It is not necessary to report a value to eight decimal places when the measures that generated that value were only accurate to the nearest tenth. Round off your final answer to one more decimal place than was present in the original data. This means that if you have data measured to the nearest tenth of a unit, report the final statistic to the nearest hundredth.

In addition to rounding your answers, you can measure your data using the following four levels of measurement.

  • Nominal scale level: data that cannot be ordered nor can it be used in calculations
  • Ordinal scale level: data that can be ordered; the differences cannot be measured
  • Interval scale level: data with a definite ordering but no starting point; the differences can be measured, but there is no such thing as a ratio.
  • Ratio scale level: data with a starting point that can be ordered; the differences have meaning and ratios can be calculated.

When organizing data, it is important to know how many times a value appears. How many statistics students study five hours or more for an exam? What percent of families on our block own two pets? Frequency, relative frequency, and cumulative relative frequency are measures that answer questions like these.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. Aug 09, 2016 Download for free at http://legacy.cnx.org/content/col11776/1.26
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask