<< Chapter < Page Chapter >> Page >

A final notion that is important to understand is the notion of complement.

Probability models

  1. A bag contains 6 red, 3 blue, 2 green and 1 white balls. A ball is picked at random. What is the probablity that it is:
    1. red
    2. blue or white
    3. not green (hint: think 'complement')
    4. not green or red?
  2. A card is selected randomly from a pack of 52. What is the probability that it is:
    1. the 2 of hearts
    2. a red card
    3. a picture card
    4. an ace
    5. a number less than 4?
  3. Even numbers from 2 -100 are written on cards. What is the probability of selecting a multiple of 5, if a card is drawn at random?

Relative frequency vs. Probability

There are two approaches to determining the probability associated with any particular event of a random experiment:

  1. determining the total number of possible outcomes and calculating the probability of each outcome using the definition of probability
  2. performing the experiment and calculating the relative frequency of each outcome

Relative frequency is defined as the number of times an event happens in a statistical experiment divided by the number of trials conducted.

It takes a very large number of trials before the relative frequency of obtaining a head on a toss of a coin approaches the probability of obtaining a head on a toss of a coin. For example, the data in [link] represent the outcomes of repeating 100 trials of a statistical experiment 100 times, i.e. tossing a coin 100 times.

Results of 100 tosses of a fair coin. H means that the coin landed heads-up and T means that the coin landed tails-up.
H T T H H T H H H H
H H H H T H H T T T
T T H T T H T H T H
H H T T H T T H T T
T H H H T T H T T H
H T T T T H T T H H
T T H T T H T T H T
H T T H T T T T H T
T H T T H H H T H T
T T T H H T T T H T

The following two worked examples show that the relative frequency of an event is not necessarily equal to the probability of the same event. Relative frequency should therefore be seen as an approximation to probability.

Determine the relative frequencies associated with each outcome of the statistical experiment detailed in [link] .

  1. There are two unique outcomes: H and T.

  2. Outcome Frequency
    H 44
    T 56
  3. The statistical experiment of tossing the coin was performed 100 times. Therefore, there were 100 trials, in total.

  4. Probability of H = frequency of outcome number of trials = 44 100 = 0 , 44 Relative Frequency of T = frequency of outcome number of trials = 56 100 = 0 , 56

    The relative frequency of the coin landing heads-up is 0,44 and the relative frequency of the coin landing tails-up is 0,56.

Determine the probability associated with an evenly weighted coin landing on either of its faces.

  1. There are two unique outcomes: H and T.

  2. There are two possible outcomes.

  3. Relative Frequency of H = number of favourable outcomes total number of outcomes = 1 2 = 0 , 5 Relative Frequency of T = number of favourable outcomes total number of outcomes = 1 2 = 0 , 5

    The probability of an evenly weighted coin landing on either face is 0,5 .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [ncs]. OpenStax CNX. Aug 05, 2011 Download for free at http://cnx.org/content/col11239/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [ncs]' conversation and receive update notifications?

Ask