<< Chapter < Page Chapter >> Page >

High pressure oxidation

High pressure oxidation is another method of oxidizing the silicon surface which controls the rate of oxidation. This is possible because the rate is proportional to the concentration of the oxide, which in turn is proportional to the partial pressure of the oxidizing species, according to Henry's law, [link] , where C is the equilibrium concentration of the oxide, H is Henry's law constant, and p O is the partial pressure of the oxidizing species.

This approach is fast, with a rate of oxidation ranging from 100 to 1000 mm/h, and also occurs at a relatively low temperature. It is a useful process, preventing dopants from being displaced and also forms a low number of defects, which is most useful at the end of processing.

Plasma oxidation

Plasma oxidation and anodization of silicon is readily accomplished by the use of activated oxygen as the oxidizing species. The highly reactive oxygen is formed within an electrical discharge or plasma. The oxidation is carried out in a low pressure (0.05 - 0.5 Torr) chamber, and the the plasma is produced either by a DC electron source or a high-frequency discharge. In simple plasma oxidation the sample (i.e., the silicon wafer) is held at ground potential. In contrast, aniodization systems usually have a DC bias between the sample and an electrode with the sample biased positively with respect to the cathode. Platinum electrodes are commonly used as the cathodes.

There have been at least 34 different reactions reported to occur in an oxygen plasma, however, the vast majority of these are inconsequential with respect to the formation of active species. Furthermore, many of the potentially active species are sufficiently short lived that it is unlikely that they make a significant contribution. The primary active species within the oxygen plasma are undoubtedly O - and O 2+ . Both being produced in near equal quantities, although only the former is relevant to plasma aniodization. While these species may be active with respect to surface oxidation, it is more likely that an electron transfer occurs from the semiconductor surface yields activated oxygen species, which are the actual reactants in the oxidation of the silicon.

The significant advatage of plasma processes is that while the electron temperature of the ionized oxygen gas is in excess of 10,000 K, the thermal temperatures required are significantly lower than required for the high pressure method, i.e.,<600 °C. The advantages of the lower reaction temperatures include: the minimization of dopant diffusion and the impediment of the generation of defects. Despite these advantages there are two primary disadvantages of any plasma based process. First, the high electric fields present during the processes cause damage to the resultant oxide, in particular, a high density of interface traps often result. However, post annealing may improve film quality. Second, the growth rates of plasma oxidation are low, typically 1000 Å/h. This growth rate is increased by about a factor of 10 for plasma aniodization, and further improvements are observed if 1 - 3% chlorine is added to the oxygen source.

Masking

A selective mask against the diffusion of dopant atoms at high temperatures can be found in a silicon dioxide layer, which can prove to be very useful in integrated circuit processing. A predeposition of dopant by ion implantation, chemical diffusion, or spin-on techniques typically results in a dopant source at or near the surface of the oxide. During the initial high-temperature step, diffusion in the oxide must be slow enough with respect to diffusion in the silicon that the dopants do not diffuse through the oxide in the masked region and reach the silicon surface. The required thickness may be determined by experimentally measuring, at a particular temperature and time, the oxide thickness necessary to prevent the inversion of a lightly doped silicon substrate of opposite conductivity. To this is then added a safety factor, with typical total values ranging from 0.5 to 0.7 mm. The impurity masking properties result when the oxide is partially converted into a silica impurity oxide "glass" phase, and prevents the impurities from reaching the SiO 2 -Si interface.

Bibliography

  • M. M. Atalla, in Properties of Elemental and Compound Semiconductors , Ed. H. Gatos, Interscience: New York (1960).
  • S. K. Ghandhi, VLSI Fabrication Principles, Silicon and Gallium Arsenide , Wiley, Chichester, 2nd Ed. (1994).
  • S. M. Sze, Physics of Semiconductor Devices , 2nd Edition, John Wiley&Sons, New York (1981).
  • D. L. Lile, Solid State Electron. , 1978, 21 , 1199.
  • W. E. Spicer, P. W. Chye, P. R. Skeath, and C. Y. Su, I. Lindau, J. Vac. Sci. Technol. , 1979, 16 , 1422.
  • V. Q. Ho and T. Sugano, IEEE Trans. Electron Devices , 1980, ED-27 , 1436.
  • J. R. Hollanhan and A. T. Bells, Techniques and Applications of Plasma Chemistry , Wiley, New York (1974).
  • R. P. H. Chang and A. K. Sinha, Appl. Phys. Lett ., 1976, 29 , 56.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask