Order the data from smallest to largest or from largest to smallest.
Count how many data values there are in the data set.
Divide the number of data values by 4. The result is the number of data values per group.
Determine the data values corresponding to the first, second and third quartiles using the number of data values per quartile.
What are the quartiles of
?
There are 12 values in the data set.
1
3
5
8
9
12
24
25
28
30
41
50
The first quartile occurs between data position 3 and 4 and is the average of data values 5 and 8. The second quartile occurs between positions 6 and 7 and is the average of data values 12 and 24. The third quartile occurs between positions 9 and 10 and is the average of data values 28 and 30.
The inter quartile range is a measure which provides information about the spread of a data set, and is calculated by subtracting the first quartile from the third quartile, giving the range of the middle half of the data set, trimming off the lowest and highest quarters, i.e.
.
The semi-interquartile range is half the interquartile range, i.e.
A class of 12 students writes a test and the results are as follows: 20, 39, 40, 43, 43, 46, 53, 58, 63, 70, 75, 91. Find the range, quartiles and the Interquartile Range.
20
39
40
43
43
46
53
58
63
70
75
91
The range = 91 - 20 = 71. This tells us that the marks are quite widely spread. (Remember, however, that 'wide' and 'large' are relative terms. If you are considering one hundred people, a range of 71 would be 'large', but if you are considering one million people, a range of 71 would likely be 'small', depending, of course, on what you were analyzing).
i.e.
i.e.
i.e.
The quartiles are 41,5, 49,5 and 66,5. These quartiles tell us that 25
of the marks are less than 41,5; 50
of the marks are less than 49,5 and 75
of the marks are less than 66,5. They also tell us that 50
of the marks lie between 41,5 and 66,5.
The Interquartile Range = 66,5 - 41,5 = 25. This tells us that the width of the middle 50
of the data values is 25.
Percentiles are the 99 data values that divide a data set into 100 groups.
The calculation of percentiles is identical to the calculation of quartiles, except the aim is to divide the data values into 100 groups instead of the 4 groups required by quartiles.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?