<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The basic operations with real numbers are presented in this chapter. The concept of absolute value is discussed both geometrically and symbolically. The geometric presentation offers a visual understanding of the meaning of |x|. The symbolic presentation includes a literal explanation of how to use the definition. Negative exponents are developed, using reciprocals and the rules of exponents the student has already learned. Scientific notation is also included, using unique and real-life examples.Objectives of this module: understand the concepts of reciprocals and negative exponents, be able to work with negative exponents.

Overview

  • Reciprocals
  • Negative Exponents
  • Working with Negative Exponents

Reciprocals

Reciprocals

Two real numbers are said to be reciprocals of each other if their product is 1. Every nonzero real number has exactly one reciprocal, as shown in the examples below. Zero has no reciprocal.

4 1 4 = 1. This means that 4 and 1 4 are reciprocals .

Got questions? Get instant answers now!

6 1 6 = 1. Hence, 6 and 1 6 are reciprocals .

Got questions? Get instant answers now!

2 1 2 = 1. Hence, 2 and 1 2 are reciprocals .

Got questions? Get instant answers now!

a 1 a = 1. Hence, a and 1 a are reciprocals if a 0.

Got questions? Get instant answers now!

x 1 x = 1. Hence, x and 1 x are reciprocals if x 0.

Got questions? Get instant answers now!

x 3 1 x 3 = 1. Hence, x 3 and 1 x 3 are reciprocals if x 0.

Got questions? Get instant answers now!

Negative exponents

We can use the idea of reciprocals to find a meaning for negative exponents.

Consider the product of x 3 and x 3 . Assume x 0 .

x 3 x 3 = x 3 + ( 3 ) = x 0 = 1

Thus, since the product of x 3 and x 3 is 1, x 3 and x 3 must be reciprocals.

We also know that x 3 1 x 3 = 1 . (See problem 6 above.) Thus, x 3 and 1 x 3 are also reciprocals.

Then, since x 3 and 1 x 3 are both reciprocals of x 3 and a real number can have only one reciprocal, it must be that x 3 = 1 x 3 .

We have used 3 as the exponent, but the process works as well for all other negative integers. We make the following definition.

If n is any natural number and x is any nonzero real number, then

x n = 1 x n

Sample set a

Write each of the following so that only positive exponents appear.

( 3 a ) 6 = 1 ( 3 a ) 6

Got questions? Get instant answers now!

( 5 x 1 ) 24 = 1 ( 5 x 1 ) 24

Got questions? Get instant answers now!

( k + 2 z ) ( 8 ) = ( k + 2 z ) 8

Got questions? Get instant answers now!

Practice set a

Write each of the following using only positive exponents.

( x y ) 4

1 ( x y ) 4

Got questions? Get instant answers now!

( a + 2 b ) 12

1 ( a + 2 b ) 12

Got questions? Get instant answers now!

( m n ) ( 4 )

( m n ) 4

Got questions? Get instant answers now!

Caution

It is important to note that a n is not necessarily a negative number. For example,

3 2 = 1 3 2 = 1 9 3 2 9

Working with negative exponents

The problems of Sample Set A suggest the following rule for working with exponents:

Moving factors up and down

In a fraction, a factor can be moved from the numerator to the denominator or from the denominator to the numerator by changing the sign of the exponent.

Sample set b

Write each of the following so that only positive exponents appear.

x 2 y 5 . The f a c t o r x 2 can be moved from the numerator to the denominator by changing the exponent 2 to + 2. x 2 y 5 = y 5 x 2

Got questions? Get instant answers now!

a 9 b 3 . The f a c t o r b 3 can be moved from the numerator to the denominator by changing the exponent 3 to + 3. a 9 b 3 = a 9 b 3

Got questions? Get instant answers now!

a 4 b 2 c 6 . This fraction can be written without any negative exponents by moving the f a c t o r c 6 into the numerator . We must change the 6 to + 6 to make the move legitimate . a 4 b 2 c 6 = a 4 b 2 c 6

Got questions? Get instant answers now!

Questions & Answers

what is decentralised
mithlesh Reply
Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask