<< Chapter < Page Chapter >> Page >
Additive synthesis creates complex sounds by adding together individual sinusoidal signals called "partials." In this module you will learn how to synthesize audio waveforms by designing the frequency and amplitude trajectories of the partials. LabVIEW programming techniques for additive synthesis will also be introduced in two examples.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
• Apply LabVIEW to Audio Signal Processing
• Get started with LabVIEW
• Obtain a fully-functional evaluation edition of LabVIEW

Overview

Additive synthesis creates complex sounds by adding together individual sinusoidal signals called partials . The prerequisite module Additive Synthesis Concepts reviews the main concepts of additive synthesis. In this module you will learn how to synthesize audio waveforms by designing the frequency and amplitude trajectories of the partials. Also, LabVIEW programming techniques for additivesynthesis will be introduced in two examples.

Frequency and amplitude trajectory design

A partial is the fundamental building block of additive synthesis. A partial is a single sinusoidal component whose amplitude and frequency are each time-varying. The time-varying amplitude denoted a ( t ) is called the amplitude trajectory and the time-varying frequency denoted f ( t ) is called the frequency trajectory . Additive synthesis requires the design of both trajectories for each partial; the partials are then summed together to create the sound.

The screencast video of [link] shows how to begin the design of a sound as a spectrogram plot, how to design the amplitude trajectory first as an intensity (loudness) trajectory in "log space" using decibels, and how to design the frequency trajectory in"log space" using octaves. Designing the partials in log space accounts for hearing perception which is logarithmic in both intensity and in frequency; refer to Perception of Sound for a detailed treatment of this subject.

[video] Design of frequency and amplitude trajectories

Example 1: fractal partials

In this first example, partials are created during a fixed time interval and then concatenated to create the overall sound. During the firsttime interval a single partial is created at a reference frequency. During the second time interval the partial's frequency linearly increases in "octave space" from the reference frequency to a frequency two octaves abovethe reference frequency. In the third interval the partial bifurcates into two partials, where one increases by an octave and the other decreases by an octave. In the fourth interval, each of the two partials bifurcates again to make a total offour partials, each increasing or decreasing by half an octave. This behavior repeats in each subsequent time interval, doubling the number of partials, and halving the amount of frequency increase or decrease.

The screencast video of [link] shows how the frequency trajectories are designed in "octave space", and then reviews the key LabVIEWprogramming techniques needed to implement this design. The video also includes an audio demonstration so you can hear the design of this "audible fractal."

The LabVIEW VI demonstrated within the video is available here: genfnc.zip . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Design of the "audible fractal," LabVIEW implementation, and audio demonstration

Example 2: spectrogram art

The design of a sound using additive synthesis typically begins with a spectrogram representation of the desired sound. In this second example, straight line segments define the frequency trajectories of nine distinct partials that create a spectrum of a recognizable object, specifically, a cartoon drawing ofan individual who is happy to be wearing a French beret.

The screencast video of [link] shows how the frequency trajectories are designed in "octave space" and specified according to the coordinates of the line segment endpoints. The design of the corresponding amplitude trajectories necessary to make the partials start and stop at the correct timesis likewise discussed. Key LabVIEW programming techniques needed to implement this design and an audio demonstration are also presented.

The LabVIEW VI demonstrated within the video is available here: face.zip . This VI requires installation of the TripleDisplay front-panel indicator.

[video] Design of the cartoon face, LabVIEW implementation, and audio demonstration

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- additive synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- additive synthesis' conversation and receive update notifications?

Ask