<< Chapter < Page Chapter >> Page >

Example 3: Taking this discrete structures course together this semester is another equivalence relation.

Equivalence relations can also be represented by a digraph since they are a binary relation on a set. For example the digraph of the equivalence relation congruent mod 3 on {0, 1, 2, 3, 4, 5 , 6} is as shown in Figure 9. It consists of three connected components.

The set of even numbers and that of odd numbers in the equivalence relation of congruent mod 2, and the set of integers equivalent to a number between 1 and 12 in the equivalence relation on hours in the clock example are called an equivalence class. Formally it is defined as follows:

Definition (equivalence class): For an equivalence relation R on a set A, the set of the elements of A that are related to an element, say a, of A is called the equivalence class of element a and it is denoted by [a].

Example 4: For the equivalence relation of hours on a clock, equivalence classes are

[1] = {1, 13, 25, ... } = {1+ 12n: n ∈N} ,

[2] = {2, 14, 26, ... } = {2+ 12n: n ∈N} ,

........,

where N is the set of natural numbers. There are altogether twelve of them.

For an equivalence relation R on a set A, every element of A is in an equivalence class. For if an element, say b, does not belong to the equivalence class of any other element in A, then the set consisting of the element b itself is an equivalence class. Thus the set A is in a sense covered by the equivalence classes. Another property of equivalence class is that equivalence classes of two elements of a set A are either disjoint or identical, that is either [a] = [b]or [a] ∩ [b]= ∅ for arbitrary elements a and b of A. Thus the set A is partitioned into equivalence classes by an equivalence relation on A. This is formally stated as a theorem below after the definition of partition.

Definition (partition): Let A be a set and let A1, A2, ..., An be subsets of A. Then {A1, A2, ..., An} is a partition of A, if and only if

(1) i = 1 n size 12{ union rSub { size 8{i=1} } rSup { size 8{n} } } {} Ai = A, and

(2) Ai ∩Aj = ∅, if Ai ≠ Aj , 1 ≤ i, j ≤ n .

(3) Example 5: Let A = {1, 2, 3, 4, 5}, A1 = {1, 5}, A2 = {3}, and A3 = {2, 4}. Then {A1, A2, A3} is a partition of A. However, B1 = {1, 2, 5}, B2 = {2, 3}, and B3 = {4} do not form a partition for A because B1 ∩B2 ≠∅, though B1 ≠B2.

Theorem 1: The set of equivalence classes of an equivalence relation on a set A is a partition of A.

Conversely, a partition of a set A determines an equivalence relation on A.

Theorem 2: Let {A1, ..., An} be a partition of a set A. Define a binary relation R on A as follows:<a, b>∈R if and only if a ∈Ai and b ∈Ai for some i, 1 ≤i ≤n . Then R is an equivalence relation.

Theorem 3: Let R1 and R2 be equivalence relations. Then R1 ∩R2 is an equivalence relation, but R1 ∪R2 is not necessarily an equivalence relation.

Order relation

Shoppers in a grocery store are served at a cashier on the first-come-first-served basis. When there are many people at cashiers, lines are formed. People in these lines are ordered for service: Those at the head of a line are served sooner than those at the end. Cars waiting for the signal to change at an intersection are also ordered similarly. Natural numbers can also be ordered in the increasing order of their magnitude. Those are just a few examples of order we encounter in our daily lives. The order relations we are going to study here are an abstraction of those relations. The properties common to orders we see in our daily lives have been extracted and are used to characterize the concepts of order. Here we are going to learn three types of order: partial order, total order, and quasi order.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete structures. OpenStax CNX. Jan 23, 2008 Download for free at http://cnx.org/content/col10513/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask