<< Chapter < Page Chapter >> Page >

Inleiding

In hierdie hoofstuk sal jy leer van 'n eenvoudiger manier om uitdrukkings soos 2 × 2 × 2 × 2 te skryf. Dit staan bekend as eksponensiaalnotasie .

Definisie

Eksponensiaalnotasie is 'n kort manier om te skryf dat 'n getal meermale met homself vermenigvuldig word. Byvoorbeeld, eerder as om te skryf 5 × 5 × 5 , gebruik ons 5 3 om aan te dui dat die getal 5 drie maal met homself vermenigvuldig word en 'n mens sê "5 tot die mag 3". Soortgelyk is 5 2 dieselfde as 5 × 5 en 3 5 is 3 × 3 × 3 × 3 × 3 . Laat ons beter definieer hoe om eksponensiaalnotasie te gebruik.

Eksponensiaalnotasie

Eksponensiaalnotasie verwys na 'n getal wat geskryf word as

a n

waar n 'n heelgetal is en a enige reële getal is. Ons noem a die grondtal en n die eksponent .

a tot die mag n is

a n = a × a × × a ( n -keer )

Dit wil sê, a word n keer met homself vermenigvuldig.

Ons kan ook 'n negatiewe eksponent, - n , gebruik. In hierdie geval

a - n = 1 a × a × × a ( n -keer )
Eksponente

Indien n 'n ewe getal is, sal a n altyd 'n positiewe getal wees vir enige reële getal a , behalwe 0 . Byvoorbeeld, hoewel - 2 negatief is, is beide ( - 2 ) 2 = - 2 × - 2 = 4 en ( - 2 ) - 2 = 1 - 2 × - 2 = 1 4 positief.

Khan academy video oor eksponente 1 (in engels)

Khan academy video oor eksponente 2 (in engels)

Eksponentwette

Daar is heelwat eksponentwette wat ons kan gebruik om getalle met eksponente te vereenvoudig. Sommige van hierdie wette het ons reeds in vorige grade teëgekom, maar ons sal die volledige lys hier sien en elke wet verduidelik, sodat jy hulle kan verstaan en nie bloot memoriseer nie.

a 0 = 1 a m × a n = a m + n a - n = 1 a n a m ÷ a n = a m - n ( a b ) n = a n b n ( a m ) n = a m n

Eksponente, wet 1: a 0 = 1

Volgens die definisie van eksponensiaalnotasie is

a 0 = 1 , ( a 0 )

Byvoorbeeld, x 0 = 1 en ( 1 000 000 ) 0 = 1

Toepassing van wet 1: a 0 = 1 , ( a 0 )

  1. 16 0
  2. 16 a 0
  3. ( 16 + a ) 0
  4. ( - 16 ) 0
  5. - 16 0

Eksponente, wet 2: a m × a n = a m + n

Khan academy video oor eksponente 3 (in engels)

Die definisie van eksponensiaalnotasie wys dat

a m × a n = 1 × a × ... × a ( m -keer ) × 1 × a × ... × a ( n -keer ) = 1 × a × ... × a ( m + n -keer ) = a m + n

Byvoorbeeld,

2 7 × 2 3 = ( 2 × 2 × 2 × 2 × 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = 2 7 + 3 = 2 10

Interessante feit

Hierdie eenvoudige wet is die rede waarom eksponente oorspronklik geskep is. Voor die dae van rekenaars moes vermenigvuldiging met potlood en papier gedoen word. Dit vat baie lank om vermenigvuldiging te doen, maar dit is vinnig en eenvoudig om getalle bymekaar te tel. Hierdie eksponentwet wys dat dit moontlik is om twee getalle te vermenigvuldig deur hulle eksponente bymekaar te tel (indien hulle dieselfde grondtal het). Hierdie ontdekking het wiskundiges baie tyd gespaar, wat hulle toe kon gebruik om iets meer produktiefs te doen.

Toepassing van wet 2: a m × a n = a m + n

  1. x 2 · x 5
  2. 2 3 . 2 4 [Neem kennis dat die grondtal (2) dieselfde bly.]
  3. 3 × 3 2 a × 3 2

Eksponente, wet 3: a - n = 1 a n , a 0

Die definisie van eksponensiaalnotasie vir 'n negatiewe eksponent wys dat

a - n = 1 ÷ a ÷ ... ÷ a ( n -keer ) = 1 1 × a × × a ( n -keer ) = 1 a n

Dit beteken dat 'n minus teken in die eksponent 'n alternatiewe manier is om aan te dui dat die hele eksponensiaal gedeel eerder asvermenigvuldig moet word.

Byvoorbeeld,

2 - 7 = 1 2 × 2 × 2 × 2 × 2 × 2 × 2 = 1 2 7

Toepassing van wet 3: a - n = 1 a n , a 0

  1. 2 - 2 = 1 2 2
  2. 2 - 2 3 2
  3. ( 2 3 ) - 3
  4. m n - 4
  5. a - 3 · x 4 a 5 · x - 2

Eksponente, wet 4: a m ÷ a n = a m - n

Met Wet 3 het ons reeds besef dat 'n minusteken 'n manier is om te wys dat die eksponensiaal gedeel eerder as vermenigvuldig moetword. Wet 4 is basies 'n meer algemene manier om dieselfde stelling te maak. Ons verkry hierdie wet deur Wet 3 aan beide kante met a m te vermenigvuldig en dan Wet 2 te gebruik.

a m a n = a m a - n = a m - n

Byvoorbeeld,

2 7 ÷ 2 3 = 2 × 2 × 2 × 2 × 2 × 2 × 2 2 × 2 × 2 = 2 × 2 × 2 × 2 = 2 4 = 2 7 - 3

Khan academy video oor eksponente 4 (in engels)

Toepassing van wet 4: a m ÷ a n = a m - n

  1. a 6 a 2 = a 6 - 2
  2. 3 2 3 6
  3. 32 a 2 4 a 8
  4. a 3 x a 4

Eksponente, wet 5: ( a b ) n = a n b n

Die volgorde waarin twee getalle vermenigvuldig word, is onbelangrik. Dus,

( a b ) n = a × b × a × b × ... × a × b ( n -keer ) = a × a × ... × a ( n -keer ) × b × b × ... × b ( n -keer ) = a n b n

Byvoorbeeld,

( 2 · 3 ) 4 = ( 2 · 3 ) × ( 2 · 3 ) × ( 2 · 3 ) × ( 2 · 3 ) = ( 2 × 2 × 2 × 2 ) × ( 3 × 3 × 3 × 3 ) = ( 2 4 ) × ( 3 4 ) = 2 4 3 4

Toepassing van wet 5: ( a b ) n = a n b n

  1. ( 2 x y ) 3 = 2 3 x 3 y 3
  2. ( 7 a b ) 2
  3. ( 5 a ) 3

Eksponente, wet 6: ( a m ) n = a m n

Dit is moontlik om die eksponensiaal van 'n eksponensiaal te bereken. Die eksponensiaal van 'n getal is 'n reële getal. So, selfs al klink die eerste sin ingewikkeld, beteken dit bloot dat 'n mens die eksponensiaal van 'n getal bereken en dan die eksponensiaal van die resultaat bereken.

( a m ) n = a m × a m × ... × a m ( n -keer ) = a × a × ... × a ( m × n -keer ) = a m n

Byvoorbeeld,

( 2 2 ) 3 = ( 2 2 ) × ( 2 2 ) × ( 2 2 ) = ( 2 × 2 ) × ( 2 × 2 ) × ( 2 × 2 ) = ( 2 6 ) = 2 ( 2 × 3 )

Toepassing van wet 6: ( a m ) n = a m n

  1. ( x 3 ) 4
  2. [ ( a 4 ) 3 ] 2
  3. ( 3 n + 3 ) 2

Vereenvoudig: 5 2 x - 1 · 9 x - 2 15 2 x - 3

  1. = 5 2 x - 1 · ( 3 2 ) x - 2 ( 5 . 3 ) 2 x - 3 = 5 2 x - 1 · 3 2 x - 4 5 2 x - 3 · 3 2 x - 3
  2. = 5 2 x - 1 - 2 x + 3 · 3 2 x - 4 - 2 x + 3 = 5 2 · 3 - 1
  3. = 25 3

Ondersoek: eksponensiale

Skryf die korrekte antwoord in the Antwoord kolom. Die beskikbare antwoorde is: 3 2 , 1, - 1 , - 1 3 , 8. Antwoorde mag herhaal word.

Vraag Antwoord
2 3
7 3 - 3
( 2 3 ) - 1
8 7 - 6
( - 3 ) - 1
( - 1 ) 23

Die volgende video gee 'n voorbeeld van hoe om sommige van die konsepte wat in hierdie hoofstuk gedek is, te gebruik.

Khan academy video oor eksponente 5 (in engels)

Hoofstukoefeninge

  1. Vereenvoudig so ver as moontlik.
    1. 302 0
    2. 1 0
    3. ( x y z ) 0
    4. [ ( 3 x 4 y 7 z 12 ) 5 ( - 5 x 9 y 3 z 4 ) 2 ] 0
    5. ( 2 x ) 3
    6. ( - 2 x ) 3
    7. ( 2 x ) 4
    8. ( - 2 x ) 4

  2. Vereenvoudig sonder om 'n sakrekenaar te gebruik. Skryf antwoorde met positiewe eksponente.
    1. 3 x - 3 ( 3 x ) 2
    2. 5 x 0 + 8 - 2 - ( 1 2 ) - 2 · 1 x
    3. 5 b - 3 5 b + 1

  3. Vereenvoudig en wys alle stappe.
    1. 2 a - 2 . 3 a + 3 6 a
    2. a 2 m + n + p a m + n + p · a m
    3. 3 n · 9 n - 3 27 n - 1
    4. ( 2 x 2 a y - b ) 3
    5. 2 3 x - 1 · 8 x + 1 4 2 x - 2
    6. 6 2 x · 11 2 x 22 2 x - 1 · 3 2 x

  4. Vereenvoudig sonder om 'n sakrekenaar te gebruik.
    1. ( - 3 ) - 3 · ( - 3 ) 2 ( - 3 ) - 4
    2. ( 3 - 1 + 2 - 1 ) - 1
    3. 9 n - 1 · 27 3 - 2 n 81 2 - n
    4. 2 3 n + 2 · 8 n - 3 4 3 n - 2

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask