<< Chapter < Page Chapter >> Page >

Simplifying powers of i

The powers of i are cyclic. Let’s look at what happens when we raise i to increasing powers.

i 1 = i i 2 = −1 i 3 = i 2 i = −1 i = i i 4 = i 3 i = i i = i 2 = ( −1 ) = 1 i 5 = i 4 i = 1 i = i

We can see that when we get to the fifth power of i , it is equal to the first power. As we continue to multiply i by increasing powers, we will see a cycle of four. Let’s examine the next four powers of i .

i 6 = i 5 i = i i = i 2 = −1 i 7 = i 6 i = i 2 i = i 3 = i i 8 = i 7 i = i 3 i = i 4 = 1 i 9 = i 8 i = i 4 i = i 5 = i

The cycle is repeated continuously: i , −1 , i , 1 , every four powers.

Simplifying powers of i

Evaluate: i 35 .

Since i 4 = 1 , we can simplify the problem by factoring out as many factors of i 4 as possible. To do so, first determine how many times 4 goes into 35: 35 = 4 8 + 3.

i 35 = i 4 8 + 3 = i 4 8 i 3 = ( i 4 ) 8 i 3 = 1 8 i 3 = i 3 = i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Can we write i 35 in other helpful ways?

As we saw in [link] , we reduced i 35 to i 3 by dividing the exponent by 4 and using the remainder to find the simplified form. But perhaps another factorization of i 35 may be more useful. [link] shows some other possible factorizations.

Factorization of i 35 i 34 i i 33 i 2 i 31 i 4 i 19 i 16
Reduced form ( i 2 ) 17 i i 33 ( −1 ) i 31 1 i 19 ( i 4 ) 4
Simplified form ( −1 ) 17 i i 33 i 31 i 19

Each of these will eventually result in the answer we obtained above but may require several more steps than our earlier method.

Access these online resources for additional instruction and practice with complex numbers.

Key concepts

  • The square root of any negative number can be written as a multiple of i . See [link] .
  • To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is the real axis, and the vertical axis is the imaginary axis. See [link] .
  • Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts. See [link] .
  • Complex numbers can be multiplied and divided.
    • To multiply complex numbers, distribute just as with polynomials. See [link] and [link] .
    • To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the denominator to eliminate the complex number from the denominator. See [link] and [link] .
  • The powers of i are cyclic, repeating every fourth one. See [link] .

Section exercises

Verbal

Explain how to add complex numbers.

Add the real parts together and the imaginary parts together.

Got questions? Get instant answers now!

What is the basic principle in multiplication of complex numbers?

Got questions? Get instant answers now!

Give an example to show that the product of two imaginary numbers is not always imaginary.

Possible answer: i times i equals 1, which is not imaginary.

Got questions? Get instant answers now!

What is a characteristic of the plot of a real number in the complex plane?

Got questions? Get instant answers now!

Algebraic

For the following exercises, evaluate the algebraic expressions.

If y = x 2 + x 4 , evaluate y given x = 2 i .

−8 + 2 i

Got questions? Get instant answers now!

If y = x 3 2 , evaluate y given x = i .

Got questions? Get instant answers now!

If y = x 2 + 3 x + 5 , evaluate y given x = 2 + i .

14 + 7 i

Got questions? Get instant answers now!

If y = 2 x 2 + x 3 , evaluate y given x = 2 3 i .

Got questions? Get instant answers now!

If y = x + 1 2 x , evaluate y given x = 5 i .

23 29 + 15 29 i

Got questions? Get instant answers now!

If y = 1 + 2 x x + 3 , evaluate y given x = 4 i .

Got questions? Get instant answers now!

Graphical

For the following exercises, plot the complex numbers on the complex plane.

Numeric

For the following exercises, perform the indicated operation and express the result as a simplified complex number.

( 3 + 2 i ) + ( 5 3 i )

8 i

Got questions? Get instant answers now!

( −2 4 i ) + ( 1 + 6 i )

Got questions? Get instant answers now!

( −5 + 3 i ) ( 6 i )

−11 + 4 i

Got questions? Get instant answers now!

( 2 3 i ) ( 3 + 2 i )

Got questions? Get instant answers now!

( −4 + 4 i ) ( −6 + 9 i )

2 −5 i

Got questions? Get instant answers now!

( 5 2 i ) ( 3 i )

6 + 15 i

Got questions? Get instant answers now!

( −2 + 4 i ) ( 8 )

−16 + 32 i

Got questions? Get instant answers now!

( −1 + 2 i ) ( −2 + 3 i )

−4 −7 i

Got questions? Get instant answers now!

( 4 2 i ) ( 4 + 2 i )

Got questions? Get instant answers now!

( 3 + 4 i ) ( 3 4 i )

25

Got questions? Get instant answers now!

3 + 4 i 2 i

2 5 + 11 5 i

Got questions? Get instant answers now!

Technology

For the following exercises, use a calculator to help answer the questions.

Evaluate ( 1 + i ) k for k = 4 , 8 , and 12. Predict the value if k = 16.

Got questions? Get instant answers now!

Evaluate ( 1 i ) k for k = 2 , 6 , and 10. Predict the value if k = 14.

128i

Got questions? Get instant answers now!

Evaluate ( l + i ) k ( l i ) k for k = 4 , 8 , and 12. Predict the value for k = 16.

Got questions? Get instant answers now!

Show that a solution of x 6 + 1 = 0 is 3 2 + 1 2 i .

( 3 2 + 1 2 i ) 6 = −1

Got questions? Get instant answers now!

Show that a solution of x 8 −1 = 0 is 2 2 + 2 2 i .

Got questions? Get instant answers now!

Extensions

For the following exercises, evaluate the expressions, writing the result as a simplified complex number.

( 2 + i ) ( 4 2 i ) ( 1 + i )

5 −5 i

Got questions? Get instant answers now!

( 1 + 3 i ) ( 2 4 i ) ( 1 + 2 i )

Got questions? Get instant answers now!

( 3 + i ) 2 ( 1 + 2 i ) 2

−2 i

Got questions? Get instant answers now!

3 + 2 i 2 + i + ( 4 + 3 i )

Got questions? Get instant answers now!

4 + i i + 3 4 i 1 i

9 2 9 2 i

Got questions? Get instant answers now!

3 + 2 i 1 + 2 i 2 3 i 3 + i

Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask