<< Chapter < Page Chapter >> Page >

A fair coin is flipped 15 times. Each flip is independent. What is the probability of getting more than ten heads? Let X = the number of heads in 15 flips of the fair coin. X takes on the values 0, 1, 2, 3, ..., 15. Since the coin is fair, p = 0.5 and q = 0.5. The number of trials is n = 15. State the probability question mathematically.

P ( x >10)

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Try it

A fair, six-sided die is rolled ten times. Each roll is independent. You want to find the probability of rolling a one more than three times. State the probability question mathematically.

P ( x >3)

Got questions? Get instant answers now!

Approximately 70% of statistics students do their homework in time for it to be collected and graded. Each student does homework independently. In a statistics class of 50 students, what is the probability that at least 40 will do their homework on time? Students are selected randomly.

a. This is a binomial problem because there is only a success or a __________, there are a fixed number of trials, and the probability of a success is 0.70 for each trial.

a. failure

Got questions? Get instant answers now!

b. If we are interested in the number of students who do their homework on time, then how do we define X ?

b. X = the number of statistics students who do their homework on time

Got questions? Get instant answers now!

c. What values does x take on?

c. 0, 1, 2, …, 50

Got questions? Get instant answers now!

d. What is a "failure," in words?

d. Failure is defined as a student who does not complete his or her homework on time.

The probability of a success is p = 0.70. The number of trials is n = 50.

Got questions? Get instant answers now!

e. If p + q = 1, then what is q ?

e. q = 0.30

Got questions? Get instant answers now!

f. The words "at least" translate as what kind of inequality for the probability question P ( x ____ 40).

f. greater than or equal to (≥)
The probability question is P ( x ≥ 40).

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Try it

Sixty-five percent of people pass the state driver’s exam on the first try. A group of 50 individuals who have taken the driver’s exam is randomly selected. Give two reasons why this is a binomial problem.

This is a binomial problem because there is only a success or a failure, and there are a definite number of trials. The probability of a success stays the same for each trial.

Got questions? Get instant answers now!

Notation for the binomial: B = binomial probability distribution function

X ~ B ( n , p )

Read this as " X is a random variable with a binomial distribution." The parameters are n and p ; n = number of trials, p = probability of a success on each trial.

It has been stated that about 41% of adult workers have a high school diploma but do not pursue any further education. If 20 adult workers are randomly selected, find the probability that at most 12 of them have a high school diploma but do not pursue any further education. How many adult workers do you expect to have a high school diploma but do not pursue any further education?

Let X = the number of workers who have a high school diploma but do not pursue any further education.

X takes on the values 0, 1, 2, ..., 20 where n = 20, p = 0.41, and q = 1 – 0.41 = 0.59. X ~ B (20, 0.41)

Find P ( x ≤ 12). P ( x ≤ 12) = 0.9738. (calculator or computer)

Go into 2 nd DISTR. The syntax for the instructions are as follows:

To calculate ( x = value): binompdf( n , p , number) if "number" is left out, the result is the binomial probability table.
To calculate P ( x ≤ value): binomcdf( n , p , number) if "number" is left out, the result is the cumulative binomial probability table.
For this problem: After you are in 2 nd DISTR, arrow down to binomcdf. Press ENTER. Enter 20,0.41,12). The result is P ( x ≤ 12) = 0.9738.

Note

If you want to find P ( x = 12), use the pdf (binompdf). If you want to find P ( x >12), use 1 - binomcdf(20,0.41,12).

The probability that at most 12 workers have a high school diploma but do not pursue any further education is 0.9738.

The graph of X ~ B (20, 0.41) is as follows:

This histogram shows a binomial probability distribution. It is made up of bars that are fairly normally distributed. The x-axis shows values from 0 to 20. The y-axis shows values from 0 to 0.2 in increments of 0.05.

The y -axis contains the probability of x , where X = the number of workers who have only a high school diploma.

The number of adult workers that you expect to have a high school diploma but not pursue any further education is the mean, μ = np = (20)(0.41) = 8.2.

The formula for the variance is σ 2 = npq . The standard deviation is σ = n p q .
σ = ( 20 ) ( 0.41 ) ( 0.59 ) = 2.20.

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask