<< Chapter < Page Chapter >> Page >
Chương này trình bày trình bày khái niệm đối ngẫu, các quy tắc đối ngẫu và giải thuật đối ngẫu. Đây là các kiến thức có giá trị trong ứng dụng vì nhờ đó có thể giải một quy hoạch tuyến tính từ quy hoạch tuyến tính đối ngẫu của nó.

KHÁI NIỆM VỀ ĐỐI NGẪU

Đối ngẫu là một khái niệm cơ bản của việc giải bài toán quy hoạch tuyến tính vì lý thuyết đối ngẫu dẫn đến một kết quả có tầm quan trọng về mặt lý thuyết và cả mặt thực hành.

Đối ngẫu của quy hoạch tuyến tính dạng chính tắc

Xét một bài toán quy hoạch tuyến tính dạng chính tắc

min z ( x ) = c T x Ax = b x 0 { alignl { stack { size 12{"min z" \( x \) =c rSup { size 8{T} } x} {} #alignl { stack { left lbrace "Ax"=" b " {} #right none left lbrace x>= "0 " {} # right no } } lbrace {}} } {}

Giả sử rằng x* là phương án tối ưu cần tìm của bài toán và x0 là một phương án của bài toán thì một cận trên của giá trị mục tiêu tối ưu được xác định vì :

cTx* £ cTx0

Tuy chưa tìm được phương án tối ưu x* nhưng nếu biết thêm được một cận dưới của giá trị mục tiêu tối ưu thì ta đã giới hạn được phần nào giá trị mục tiêu tối ưu. Người ta ước lượng cận dưới này theo cách như sau :

Với mỗi vectơ xT = [x1 x2 ... xn] ³ 0 thuộc Rn chưa thoả ràng buộc của bài toán, tức là

b – Ax ¹ 0

người ta nới lỏng bài toán trên thành bài toán nới lỏng :

min L(x,y) = cTx + yT(b - Ax)

x ³ 0

yT = [ y1 y2 ... ym] tuỳ ý Î Rm

Gọi g(y) là giá trị mục tiêu tối ưu của bài toán nới lỏng, ta có :

g(y)= min { cTx + yT(b - Ax) } (x ³ 0)

£ cTx + yT(b - Ax)

Trong trường hợp x là phương án của bài toán ban đầu, tức là :

b - Ax = 0

thì

g(y) £ cTx

Vậy g(y) là một cận dưới của giá trị mục tiêu bất kỳ nên cũng là cận dưới của giá trị mục tiêu tối ưu.

Một cách tự nhiên là người ta quan tâm đến bài toán tìm cận dưới lớn nhất, đó là :

max g(y)

y tuỳ ý Î Rm

Bài toán này được gọi là bài toán đối ngẫu của bài toán ban đầu. Trong phần sau người ta sẽ chứng minh giá trị mục tiêu tối ưu của bài toán đối ngẫu bằng với giá trị mục tiêu tối ưu của bài toán gốc ban đầu.

Người ta đưa bài toán đối ngẫu về dạng dể sử dụng bằng cách tính như sau :

g(y)= min { cTx+yT(b - Ax) }(x ³ 0)

= min { cTx + yTb - yTAx }(x ³ 0)

= min { yTb + (cT - yTA)x }(x ³ 0)

= yTb + min { (cT - yTA)x } (x ³ 0)

Ta thấy :

min ( c T y T A ) x = ( x 0 ) [ 0 khi c T y T A 0 [ không xác đinh khi c T y T A < 0 [ size 12{ {"min" \( c rSup { size 8{T} } - y rSup { size 8{T} } A \) x={}} cSub { size 8{ \( x>= 0 \) } } alignl { stack { \[0" khi c" rSup { size 8{T} } - y rSup { size 8{T} } A>= 0 {} # \[ ital "không"" xác đinh khi c" rSup { size 8{T} } - y rSup { size 8{T} } A<0 {} } } \[ } {}

Vậy ta nhận được :

g(y) = yTb với cT - yTA  0

Suy ra bài tóan đối ngẫu có dạng :

max g ( y ) = y T b y T A c T y R m tùy ý { alignl { stack { size 12{"max"" g" \( y \) =y rSup { size 8{T} } b} {} #alignl { stack { left lbrace y rSup { size 8{T} } A<= c rSup { size 8{T} } {} # right none left lbrace y in R rSup { size 8{m} } " tùy ý " {} #right no } } lbrace {} } } {}

Hay là :

max g ( y ) = b T y A T y c y R m tùy ý { alignl { stack { size 12{"max"" g" \( y \) =b rSup { size 8{T} } y} {} #alignl { stack { left lbrace A rSup { size 8{T} } y<= c {} # right none left lbrace y in R rSup { size 8{m} } " tùy ý " {} #right no } } lbrace {} } } {}

Định nghĩa đối ngẫu trong trường hợp quy hoạch tổng quát

Trong trường hợp quy hoạch tuyến tính tổng quát, những quy tắc sau đây được áp dụng để xây dựng bài toán đối ngẫu :

- Hàm mục tiêu đối ngẫu :

. max « min

- Biến đối ngẫu :

. Mỗi ràng buộc « một biến đối ngẫu

- Chi phí đối ngẫu và giới hạn ràng buộc :

. Chi phí đối ngẫu « giới hạn ràng buộc

- Ma trận ràng buộc đối ngẫu :

. Ma trận chuyển vị

- Chiều của ràng buộc và dấu của biến :

. Ràng buộc trong bài toán max có dấu £ thì biến đối ngẫu trong bài toán min có dấu ³ 0 ( trái chiều )

. Ràng buộc trong bài toán max có dấu = thì biến đối ngẫu trong bài toán min có dấu tùy ý.

. Ràng buộc trong bài toán max có dấu ³ thì biến đối ngẫu trong bài toán min có dấu £ 0 ( trái chiều )

. Biến của bài toán max có dấu ³ 0 thì ràng buộc đối ngẫu trong bài toán min có dấu ³ ( cùng chiều )

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask