<< Chapter < Page Chapter >> Page >
This module is part of a collection of modules that were developed to support laboratory activities in a Precalculus for PreEngineers (MATH 1508) at the University of Texas at El Paso. Contained in this module of applications of quadratic equations in various fields of engineering and science. These include the motion of an object under constant acceleration, quantitative management, and break-even analysis.

Quadratic equations

Introduction

Quadratic equations play an important role in the modeling of many physical situations. Finding the roots of quadratic equations is a necessary skill. Being able to interpret these roots is an important ability that is important in understanding physical problems. In this module, we will present a number of applications of quadratic equations in several fields of engineering.

Determining the roots of quadratic equations

A quadratic equation has the following form

ax 2 + bx + c = 0 size 12{ ital "ax" rSup { size 8{2} } + ital "bx"+c=0} {}

Because a quadratic equation involves a polynomial of order 2, it will have two roots. In general, a quadratic equation will either have two roots that are both real or have two roots that are both complex. For the present module, we will restrict our attention to quadratic equations that have two real roots.

There are three methods that are effective in solving for the roots of a quadratic equation. They are:

  • Solution by factoring
  • Solution by completing the square
  • Solution by the quadratic formula

The applications that follow will include examples of each of these three methods of solution.

Motion of an object under uniform acceleration

We will begin our study of quadratic equations by considering an application that you will likely encounter later in physics and mechanical engineering classes. Let us consider an object that is subject to a uniform acceleration. By uniform, we mean an acceleration that is constant. Such an object might be an automobile, an aircraft, a rocket, etc. The motion of an object subjected to uniform acceleration can be expressed mathematically by the following equation.

s ( t ) = 1 2 a t 2 + v 0 t + s 0 size 12{s \( t \) = { {1} over {2} } `a`t rSup { size 8{2} } +v rSub { size 8{0} } t+s rSub { size 8{0} } } {}

where s ( t ) represents the position of the object as function of time t ,

a represents the constant acceleration of the object,

v 0 represents the value of the object’s velocity at time t = 0, and

s 0 represents the position of the object at time t = 0.

An equation of this sort is called an equation of motion . We will illustrate its use in the following exercise.

Example 1: For our first example, let us consider a dragster on a drag strip of length one-quarter mile. For time t<0, the dragster is at rest at the starting line. At time = 0, the driver depresses his gas pedal to produce a uniform acceleration of 50 m/s 2 . Under these conditions, how far will the dragster travel in 1 second?

Because the dragster travels in a horizontal direction, we will represent its distance from the starting point as a fuction of time as x ( t ). We also know that the value for the acceleration ( a ) is 30 m / s 2 . We can incorporate these changes in equation (1) to produce a new equation of motion for the dragster.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (laboratory) engineering applications of precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11337/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (laboratory) engineering applications of precalculus' conversation and receive update notifications?

Ask