<< Chapter < Page Chapter >> Page >

Nuclear magnetic resonance

NMR can be considered as a “new” characterization technique as far as SWNTs are concerned. Solution state NMR is limited for SWNT characterization because low solubility and slow tumbling of the SWNTs results in broad spectra. Despite this issue, there are still solution 1 H NMR reported of SWNTs functionalized by carbenes, nitrenes and azomethine ylides because of the high solubility of derivatized SWNTs. However, proof of covalent functionalization cannot be obtained from the 1 H NMR. As an alternative, solid state 13 C NMR has been employed to characterize several functionalized SWNTs and show successful observation of sidewall organic functional groups, such as carboxylic and alkyl groups. But there has been a lack of direct evidence of sp 3 carbons on the sidewall of SWNTs that provides information of covalent functionalization.

Solid state 13 C NMR has been successfully employed in the characterization of F-SWNTs through the direct observation of the sp 3 C -F carbons on sidewall of SWNTs. This methodology has been transferred to more complicated systems; however, it has been found that longer side chain length increases the ease to observe sp 3 C -X sidewall carbons.

Solid state NMR is a potentially powerful technique for characterizing functionalized SWNTs because molecular dynamic information can also be obtained. Observation that higher side chain mobility can be achieved by using a longer side chain length offers a method of exploring functional group conformation. In fact, there have been reports using solid state NMR to study molecular mobility of functionalized multi-walled carbon nanotubes.

Microscopy

AFM, TEM and STM are useful imaging techniques to characterize functionalized SWNTs. As techniques, they are routinely used to provide an “image” of an individual nanoparticle, as opposed to an average of all the particles.

Atomic force microscopy

AFM shows morphology on the surface of SWNTs. The height profile on AFM is often used to show presence of functional groups on sidewall of SWNTs. Individual SWNTs can be probed by AFM and sometimes provide information of dispersion and exfoliation of bundles. Measurement of heights along an individual SWNT can be correlated with the substituent group, i.e., the larger an alkyl chain of a sidewall substituent the greater the height measured. AFM does not distinguish whether those functional groups are covalently attached or physically adsorbed on the surface of SWNTs.

Transmission electron microscopy

TEM can be used to directly image SWNTs and at high resolution clearly shows the sidewall of individual SWNT. However, the resolution of TEM is not sufficient to directly observe covalent attachment of chemical modification moieties, i.e., to differentiate between sp 2 and sp 3 carbon atoms. TEM can be used to provide information of functionalization effect on dispersion and exfoliation of ropes.

Samples are usually prepared from very dilute concentration of SWNTs. Sample needs to be very homogeneous to get reliable data. As with AFM, TEM only shows a very small portion of sample, using them to characterize functionalized SWNTs and evaluate dispersion of samples in solvents needs to be done with caution.

Scanning tunneling microscopy

STM offers a lot of insight on structure and surface of functionalized SWNTs. STM measures electronic structure, while sometimes the topographical information can be indirectly inferred by STM images. STM has been used to characterize F-SWNTs gold-marked SWNTs, and organic functionalized SWNTs. Distribution of functional groups can be inferred from STM images since the location of a substituent alters the localized electronic structure of the tube. STM images the position/location of chemical changes to the SWNT structure. The band-like structure of F-SWNTs was first disclosed by STM.

STM has the same problem that is inherent with AFM and TEM, that when using small sample size, the result may not be statistically relevant. Also, chemical identity of the features on SWNTs cannot be determined by STM; rather, they have to be identified by spectroscopic methods such as IR or NMR. A difficulty with STM imaging is that the sample has to be conductive, thus deposition of the SWNT onto a gold (or similar) surface is necessary.

Bibliography

  • L. B. Alemany, L. Zhang, L. Zeng, C. L. Edwards, and A. R. Barron, Chem. Mater ., 2007, 19 , 735.
  • J. L. Bahr and J. M. Tour, J. Mater. Chem ., 2002, 12 , 1952.
  • M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, J. Phys. Chem. C , 2007, 111 , 17887.
  • A. Hirsch, Angew. Chem. Int. Ed ., 2002, 41 , 1853.
  • M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, and A. Hirsch, J. Am. Chem. Soc ., 2003, 125 , 8566.
  • K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, and N. J. Halas, Chem. Phys. Lett ., 1999, 313 , 455.
  • V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Acc. Chem. Res ., 2002, 35 , 1087.
  • F. Liang, L. B. Alemany, J. M. Beach, and W. E. Billups, J. Am. Chem. Soc ., 2005, 127 , 13941.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev ., 2006, 106 , 1105.
  • H-L. Wu, Y-T. Yang, C-C. M. Ma, and H-C. Kuan, J. Polym. Sci. A. Polym. Chem ., 2005, 6084.
  • L. Zeng, L. Zhang, and A. R. Barron, Nano Lett ., 2005, 5 , 2001.
  • L. Zhang, J. Zhang, N. Schmandt, J. Cratty, V. N. Khabashesku, K. F. Kelly, and A. R. Barron, Chem. Commun ., 2005, 5429.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask