<< Chapter < Page Chapter >> Page >

In the single processor and SMP systems with few CPUs, one of our goals as programmers should be to stay out of the way of the compiler. Often constructs used to improve performance on a particular architecture limit our ability to achieve performance on another architecture. Further, these “brilliant” (read obtuse) hand optimizations often confuse a compiler, limiting its ability to automatically transform our code to take advantage of the particular strengths of the computer architecture.

As programmers, it is important to know how the compiler works so we can know when to help it out and when to leave it alone. We also must be aware that as compilers improve (never as much as salespeople claim) it’s best to leave more and more to the compiler.

As we move up the hierarchy of high performance computers, we need to learn new techniques to map our programs onto these architectures, including language extensions, library calls, and compiler directives. As we use these features, our programs become less portable. Also, using these higher-level constructs, we must not make modifications that result in poor performance on the individual RISC microprocessors that often make up the parallel processing system.

Measuring performance

When a computer is being purchased for computationally intensive applications, it is important to determine how well the system will actually perform this function. One way to choose among a set of competing systems is to have each vendor loan you a system for a period of time to test your applications. At the end of the evaluation period, you could send back the systems that did not make the grade and pay for your favorite system. Unfortunately, most vendors won’t lend you a system for such an extended period of time unless there is some assurance you will eventually purchase the system.

More often we evaluate the system’s potential performance using benchmarks . There are industry benchmarks and your own locally developed benchmarks. Both types of benchmarks require some careful thought and planning for them to be an effective tool in determining the best system for your application.

The next step

Quite aside from economics, computer performance is a fascinating and challenging subject. Computer architecture is interesting in its own right and a topic that any computer professional should be comfortable with. Getting the last bit of per- formance out of an important application can be a stimulating exercise, in addition to an economic necessity. There are probably a few people who simply enjoy matching wits with a clever computer architecture.

What do you need to get into the game?

  • A basic understanding of modern computer architecture. You don’t need an advanced degree in computer engineering, but you do need to understand the basic terminology.
  • A basic understanding of benchmarking, or performance measurement, so you can quantify your own successes and failures and use that information to improve the performance of your application.

This book is intended to be an easily understood introduction and overview of high performance computing. It is an interesting field, and one that will become more important as we make even greater demands on our most common personal computers. In the high performance computer field, there is always a tradeoff between the single CPU performance and the performance of a multiple processor system. Multiple processor systems are generally more expensive and difficult to program (unless you have this book).

Some people claim we eventually will have single CPUs so fast we won’t need to understand any type of advanced architectures that require some skill to program.

So far in this field of computing, even as performance of a single inexpensive microprocessor has increased over a thousandfold, there seems to be no less interest in lashing a thousand of these processors together to get a millionfold increase in power. The cheaper the building blocks of high performance computing become, the greater the benefit for using many processors. If at some point in the future, we have a single processor that is faster than any of the 512-processor scalable systems of today, think how much we could do when we connect 512 of those new processors together in a single system.

That’s what this book is all about. If you’re interested, read on.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask