<< Chapter < Page Chapter >> Page >

Problems in 3 dimensions

D is the top of a tower of height h . Its base is at C . The triangle A B C lies on the ground (a horizontal plane). If we have that B C = b , D B ^ A = α , D B ^ C = x and D C ^ B = θ , show that

h = b sin α sin x sin ( x + θ )

  1. We have that the triangle A B D is right-angled. Thus we can relate the height h with the angle α and either the length B A or B D (using sines or cosines). But we have two angles and a length for B C D , and thus can work out all the remaining lengths and angles of this triangle. We can thus work out B D .

  2. We have that

    h B D = sin α h = B D sin α

    Now we need B D in terms of the given angles and length b . Considering the triangle B C D , we see that we can use the sine rule.

    sin θ B D = sin ( B D ^ C ) b B D = b sin θ sin ( b D ^ C )

    But D B ^ C = 180 - α - θ , and

    sin ( 180 - α - θ ) = - sin ( - α - θ ) = sin ( α + θ )

    So

    B D = b sin θ sin ( D B ^ C ) = b sin θ sin ( α + θ )
  1. The line B C represents a tall tower, with C at its foot. Its angle of elevation from D is θ . We are also given that B A = A D = x .
    1. Find the height of the tower B C in terms of x , tan θ and cos 2 α .
    2. Find B C if we are given that x = 140 m , α = 21 and θ = 9 .

Other geometries

Taxicab geometry

Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of geometry in which the usual metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the (absolute) differences of their coordinates.

Manhattan distance

The metric in taxi-cab geometry, is known as the Manhattan distance , between two points in an Euclidean space with fixed Cartesian coordinate system as the sum of the lengths of the projections of the line segment between the points onto the coordinate axes.

For example, the Manhattan distance between the point P 1 with coordinates ( x 1 , y 1 ) and the point P 2 at ( x 2 , y 2 ) is

x 1 - x 2 + y 1 - y 2
Manhattan Distance (dotted and solid) compared to Euclidean Distance (dashed). In each case the Manhattan distance is 12 units, while the Euclidean distance is 36

The Manhattan distance changes if the coordinate system is rotated, but does not depend on the translation of the coordinate system or its reflection with respect to a coordinate axis.

Manhattan distance is also known as city block distance or taxi-cab distance. It is given these names because it is the shortest distance a car would drive in a city laid out in square blocks.

Taxicab geometry satisfies all of Euclid's axioms except for the side-angle-side axiom, as one can generate two triangles with two sides and the angle between them the same and have them not be congruent. In particular, the parallel postulate holds.

A circle in taxicab geometry consists of those points that are a fixed Manhattan distance from the center. These circles are squares whose sides make a 45 angle with the coordinate axes.

The great-circle distance is the shortest distance between any two points on the surface of a sphere measured along a path on the surface of the sphere (as opposed to going through the sphere's interior). Because spherical geometry is rather different from ordinary Euclidean geometry, the equations for distance take on a different form. The distance between two points in Euclidean space is the length of a straight line from one point to the other. On the sphere, however, there are no straight lines. In non-Euclidean geometry, straight lines are replaced with geodesics. Geodesics on the sphere are the great circles (circles on the sphere whose centers are coincident with the center of the sphere). The shape of the Earth more closely resembles a flattened spheroid with extreme values for the radius of curvature, or arcradius, of 6335.437 km at the equator (vertically) and 6399.592 km at the poles, and having an average great-circle radius of 6372.795 km.

Summary of the trigonomertic rules and identities

Pythagorean Identity Cofunction Identities Ratio Identities
cos 2 θ + sin 2 θ = 1 sin ( 90 - θ ) = cos θ tan θ = sin θ cos θ
cos ( 90 - θ ) = sin θ
Odd/Even Identities Periodicity Identities Double angle Identities
sin ( - θ ) = - sin θ sin ( θ ± 360 ) = sin θ sin ( 2 θ ) = 2 sin θ cos θ
cos ( - θ ) = cos θ cos ( θ ± 360 ) = cos θ cos ( 2 θ ) = cos 2 θ - sin 2 θ
tan ( - θ ) = - tan θ tan ( θ ± 180 ) = tan θ cos ( 2 θ ) = 2 cos 2 θ - 1
tan ( 2 θ ) = 2 tan θ 1 - tan 2 θ
Addition/Subtraction Identities Area Rule Cosine rule
sin ( θ + φ ) = sin θ cos φ + cos θ sin φ Area = 1 2 b c sin A a 2 = b 2 + c 2 - 2 b c cos A
sin ( θ - φ ) = sin θ cos φ - cos θ sin φ Area = 1 2 a b sin C b 2 = a 2 + c 2 - 2 a c cos B
cos ( θ + φ ) = cos θ cos φ - sin θ sin φ A r e a = 1 2 a c sin B c 2 = a 2 + b 2 - 2 a b cos C
cos ( θ - φ ) = cos θ cos φ + sin θ sin φ
tan ( θ + φ ) = tan φ + tan θ 1 - tan θ tan φ
tan ( θ - φ ) = tan φ - tan θ 1 + tan θ tan φ
Sine Rule
sin A a = sin B b = sin C c

End of chapter exercises

Do the following without using a calculator.

  1. Suppose cos θ = 0 . 7 . Find cos 2 θ and cos 4 θ .
  2. If sin θ = 4 7 , again find cos 2 θ and cos 4 θ .
  3. Work out the following:
    1. cos 15
    2. cos 75
    3. tan 105
    4. cos 15
    5. cos 3 cos 42 - sin 3 sin 42
    6. 1 - 2 sin 2 ( 22 . 5 )
  4. Solve the following equations:
    1. cos 3 θ · cos θ - sin 3 θ · sin θ = - 1 2
    2. 3 sin θ = 2 cos 2 θ
  5. Prove the following identities
    1. sin 3 θ = 3 sin θ - sin 3 θ 4
    2. cos 2 α ( 1 - tan 2 α ) = cos 2 α
    3. 4 sin θ · cos θ · cos 2 θ = sin 4 θ
    4. 4 cos 3 x - 3 cos x = cos 3 x
    5. tan y = sin 2 y cos 2 y + 1
  6. (Challenge question!) If a + b + c = 180 , prove that
    sin 3 a + sin 3 b + sin 3 c = 3 cos ( a / 2 ) cos ( b / 2 ) cos ( c / 2 ) + cos ( 3 a / 2 ) cos ( 3 b / 2 ) cos ( 3 c / 2 )

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (lecture) readings in precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11354/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (lecture) readings in precalculus' conversation and receive update notifications?

Ask