<< Chapter < Page Chapter >> Page >

Organisms that live in water need to obtain oxygen from the water. Oxygen dissolves in water but at a lower concentration than in the atmosphere. The atmosphere has roughly 21 percent oxygen. In water, the oxygen concentration is much smaller than that. Fish and many other aquatic organisms have evolved gills to take up the dissolved oxygen from water ( [link] ). Gills are thin tissue filaments that are highly branched and folded. When water passes over the gills, the dissolved oxygen in water rapidly diffuses across the gills into the bloodstream. The circulatory system can then carry the oxygenated blood to the other parts of the body. In animals that contain coelomic fluid instead of blood, oxygen diffuses across the gill surfaces into the coelomic fluid. Gills are found in mollusks, annelids, and crustaceans.

The photo shows a carp with a wedge of skin at the back of the head cut away, revealing pink gills.
This common carp, like many other aquatic organisms, has gills that allow it to obtain oxygen from water. (credit: "Guitardude012"/Wikimedia Commons)

The folded surfaces of the gills provide a large surface area to ensure that the fish gets sufficient oxygen. Diffusion is a process in which material travels from regions of high concentration to low concentration until equilibrium is reached. In this case, blood with a low concentration of oxygen molecules circulates through the gills. The concentration of oxygen molecules in water is higher than the concentration of oxygen molecules in gills. As a result, oxygen molecules diffuse from water (high concentration) to blood (low concentration), as shown in [link] . Similarly, carbon dioxide molecules in the blood diffuse from the blood (high concentration) to water (low concentration).

The illustration shows a fish, with a box indicating the location of the gills, behind the head. A close-up image shows the gills, each of which resembles a feathery worm. Two stacks of gills attach to a structure called a columnar gill arch, forming a tall V. Water travels in from the outside of the V, between each gill, then travels out of the top of the V. Veins travel into the gill from the base of the gill arch, and arteries travel back out on the opposite side. A close-up image of a single gill shows that water travels over the gill, passing over deoxygenated veins first, then over oxygenated arteries.
As water flows over the gills, oxygen is transferred to blood via the veins. (credit "fish": modification of work by Duane Raver, NOAA)

Tracheal systems

Insect respiration is independent of its circulatory system; therefore, the blood does not play a direct role in oxygen transport. Insects have a highly specialized type of respiratory system called the tracheal system, which consists of a network of small tubes that carries oxygen to the entire body. The tracheal system is the most direct and efficient respiratory system in active animals. The tubes in the tracheal system are made of a polymeric material called chitin.

Insect bodies have openings, called spiracles, along the thorax and abdomen. These openings connect to the tubular network, allowing oxygen to pass into the body ( [link] ) and regulating the diffusion of CO 2 and water vapor. Air enters and leaves the tracheal system through the spiracles. Some insects can ventilate the tracheal system with body movements.

The illustration shows the tracheal system of a bee. Openings called spiracles appear along the side of the body. Vertical tubes lead from the spiracles to a tube that runs along the top of the body from front to back.
Insects perform respiration via a tracheal system.

Mammalian systems

In mammals, pulmonary ventilation occurs via inhalation (breathing). During inhalation, air enters the body through the nasal cavity    located just inside the nose ( [link] ). As air passes through the nasal cavity, the air is warmed to body temperature and humidified. The respiratory tract is coated with mucus to seal the tissues from direct contact with air. Mucus is high in water. As air crosses these surfaces of the mucous membranes, it picks up water. These processes help equilibrate the air to the body conditions, reducing any damage that cold, dry air can cause. Particulate matter that is floating in the air is removed in the nasal passages via mucus and cilia. The processes of warming, humidifying, and removing particles are important protective mechanisms that prevent damage to the trachea and lungs. Thus, inhalation serves several purposes in addition to bringing oxygen into the respiratory system.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Bmcc 103 - concepts of biology. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11855/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bmcc 103 - concepts of biology' conversation and receive update notifications?

Ask